Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (05): 2329-2338.DOI: 10.16085/j.issn.1000-6613.2018-1390
• Industrial catalysis • Previous Articles Next Articles
Tian GU1(),Fengyu GAO1,2,Xiaolong TANG1,2(),Honghong YI1,2,Runcao ZHANG1,Yuhe WANG1
Received:
2018-07-06
Revised:
2018-11-22
Online:
2019-05-05
Published:
2019-05-05
Contact:
Xiaolong TANG
顾甜1(),高凤雨1,2,唐晓龙1,2(),易红宏1,2,张润草1,王雨禾1
通讯作者:
唐晓龙
作者简介:
<named-content content-type="corresp-name">顾甜</named-content>(1995—),女,硕士研究生,研究方向为环境污染控制与治理、环境功能材料等。E-mail:<email>gutianzp@163.com</email>。|唐晓龙,教授,博士生导师,研究方向为环境污染控制与治理、环境功能材料等。E-mail:<email>txiaolong@126.com</email>。
基金资助:
CLC Number:
Tian GU, Fengyu GAO, Xiaolong TANG, Honghong YI, Runcao ZHANG, Yuhe WANG. Research progress on carbon-based material supported catalysts for the selective catalytic reduction of NO x by NH3 at low temperature[J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2329-2338.
顾甜, 高凤雨, 唐晓龙, 易红宏, 张润草, 王雨禾. 炭基材料负载型低温NH3-SCR脱硝催化剂的研究进展[J]. 化工进展, 2019, 38(05): 2329-2338.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1390
催化剂(质量分数) | 制备方法 | 反应条件 | NO转化率/% | 参考 文献 |
---|---|---|---|---|
5% V2O5/ACF | 等体积浸渍法 (500℃/8h) | [NO]=[NH3]=600μL/L,[O2]=5%, Ar to balance,GHSV=2000h-1 | 96(180℃) | [ |
10% Fe2O3/ACF | 浸渍法(300℃/5h) | [NO]=[NH3]=200μL/L,[O2]=10.5%,[H2O]= 8%, N2to balance,Q/W=200mL·min-1·g-1 | 约38(150℃) | [ |
10% Co2O3/ACF | 约38 (150℃) | |||
10% Mn2O3/ACF | 90 (150℃) | |||
9% CeO2/ACF | 浸渍法(350℃/6h) | [NO]=[NH3]=1000μL/L,[O2]=5%, Ar to balance,GHSV=11000h-1 | 93.96(180℃) | [ |
10% CeO2/ACF | 浸渍法(360℃/2h) | [NO]=1000μL/L,[NH3]=1100μL/L,[O2]=5%, N2to balance,GHSV=5000h-1 | 80~90 (200~300℃) | [ |
20% La2O3/ACF | 浸渍法(360℃/2h) | [NO]=1000μL/L,[NH3]=1100μL/L,[O2]=5%, N2to balance,GHSV=5000h-1 | 55~85 (200~300℃) | [ |
12% MnO x -CeO x /ACFN | 等体积浸渍法 (500℃/6h) | [NO]=600μL/L, [NH3]=650μL/L, [O2]=3.6%, N2 to balance, W/F=3mg/(mL·min-1) | 100(100~150℃) | [ |
10% urea-(0.5CeO2-0.5MnO2)/ACF | 浸渍法 (420℃/2h) | [NO]=1000μL/L, [O2]=21%, N2 to balance, GHSV=10000h-1 | 90(30℃) | [ |
1.2% Mn(0.75)-Fe/ACF | 浸渍法 (300℃/0.5h) | [NO]=500μL/L, [NH3]=500μL/L, [O2]=5%, N2 to balance, GHSV= 56000h-1 | 92(200℃) | [ |
10%Ce-2%Fe/ACF | 浸渍法 (300℃/4h) | [NO]=1000μL/L, [NH3]=1080μL/L, [O2]=5%, N2 to balance, GHSV= 5000h-1 | 97(80~120℃) | [ |
催化剂(质量分数) | 制备方法 | 反应条件 | NO转化率/% | 参考 文献 |
---|---|---|---|---|
5% V2O5/ACF | 等体积浸渍法 (500℃/8h) | [NO]=[NH3]=600μL/L,[O2]=5%, Ar to balance,GHSV=2000h-1 | 96(180℃) | [ |
10% Fe2O3/ACF | 浸渍法(300℃/5h) | [NO]=[NH3]=200μL/L,[O2]=10.5%,[H2O]= 8%, N2to balance,Q/W=200mL·min-1·g-1 | 约38(150℃) | [ |
10% Co2O3/ACF | 约38 (150℃) | |||
10% Mn2O3/ACF | 90 (150℃) | |||
9% CeO2/ACF | 浸渍法(350℃/6h) | [NO]=[NH3]=1000μL/L,[O2]=5%, Ar to balance,GHSV=11000h-1 | 93.96(180℃) | [ |
10% CeO2/ACF | 浸渍法(360℃/2h) | [NO]=1000μL/L,[NH3]=1100μL/L,[O2]=5%, N2to balance,GHSV=5000h-1 | 80~90 (200~300℃) | [ |
20% La2O3/ACF | 浸渍法(360℃/2h) | [NO]=1000μL/L,[NH3]=1100μL/L,[O2]=5%, N2to balance,GHSV=5000h-1 | 55~85 (200~300℃) | [ |
12% MnO x -CeO x /ACFN | 等体积浸渍法 (500℃/6h) | [NO]=600μL/L, [NH3]=650μL/L, [O2]=3.6%, N2 to balance, W/F=3mg/(mL·min-1) | 100(100~150℃) | [ |
10% urea-(0.5CeO2-0.5MnO2)/ACF | 浸渍法 (420℃/2h) | [NO]=1000μL/L, [O2]=21%, N2 to balance, GHSV=10000h-1 | 90(30℃) | [ |
1.2% Mn(0.75)-Fe/ACF | 浸渍法 (300℃/0.5h) | [NO]=500μL/L, [NH3]=500μL/L, [O2]=5%, N2 to balance, GHSV= 56000h-1 | 92(200℃) | [ |
10%Ce-2%Fe/ACF | 浸渍法 (300℃/4h) | [NO]=1000μL/L, [NH3]=1080μL/L, [O2]=5%, N2 to balance, GHSV= 5000h-1 | 97(80~120℃) | [ |
1 | FAN Z Y , SHI J W , GAO C , et al . Gd-modified MnO x for the selective catalytic reduction of NO by NH3: the promoting effect of Gd on the catalytic performance and sulfur resistance[J]. Chemical Engineering Journal, 2018, 348: 820-830. |
2 | MARANI D , SILVA R H , DANKEAW A , et al . NO x selective catalytic reduction (SCR) on self-supported V-W-doped TiO2 nanofibers[J]. New Journal of Chemistry, 2017, 41(9): 3466-3472. |
3 | SUN C Z , LIU H , CHEN W , et al . Insights into the Sm/Zr co-doping effects on N2 selectivity and SO2 resistance of a MnO x -TiO2 catalyst for the NH3-SCR reaction[J]. Chemical Engineering Journal, 2018, 347: 27-40. |
4 | 王鲁元, 程星星, 王志强, 等 . 低温催化脱硝技术的研究进展[J]. 化工进展, 2016, 35(7): 2222-2235. |
WANG L Y , CHENG X X , WANG Z Q , et al . Recent research progress in catalytic reduction of NO x at low temperature[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2222-2235. | |
5 | FAN X Y , YANG H S , TIAN W , et al . Catalytic oxidation of chlorobenzene over MnO x /Al2O3-carbon nanotubes composites[J]. Catalysis Letters, 2011, 141(1): 158-162. |
6 | 杨永利, 徐东耀, 晁春艳, 等 . 负载型Mn基低温NH3-SCR脱硝催化剂研究综述[J]. 化工进展, 2016, 35(4): 1094-1100. |
YANG Y L , XU D Y , CHAO C Y , et al . Research advance review on supported Mn-based catalysts at low-temperature selective catalytic reduction of NO x with NH3 [J]. Chemical Industry and Engineering Progress, 2016, 35(4): 1094-1100. | |
7 | 胡宇峰, 薛建明 . 炭基材料低温SCR烟气脱硝催化剂的研究进展[J]. 工业催化, 2017(2): 1-7. |
HU Y F , XU J M . Research advance in carbon based low temperature selective catalytic reduction catalysts for flue gas denitrification[J]. Industrial Catalysis, 2017(2): 1-7. | |
8 | 左嫣然, 易红宏, 唐晓龙, 等 . 酸碱改性对活性焦烧结烟气脱硫性能的影响[J]. 环境工程学报, 2015(7): 3405-3410. |
ZUO Y R , YI H H , TANG X L , et al . Effect of acid and alkali modification on SO2 removal by active coke in sintering flue gas[J]. Chinese Journal of Environmental Engineering, 2015(7): 3405-3410. | |
9 | HUANG Z G , HOU Y Q , ZHU Z Z , et al . Study on the NO reduction by NH3 on a SO4 2-/AC catalyst at low temperature[J]. Catalysis Communications, 2014, 50: 83-86. |
10 | WANG J P , YAN Z , LIU L L , et al . In situ DRIFTS investigation on the SCR of NO with NH3 over V2O5 catalyst supported by activated semi-coke[J]. Applied Surface Science, 2014, 313: 660-669. |
11 | XUE Y Y , LU G Z , GUO Y , et al . Effect of pretreatment method of activated carbon on the catalytic reduction of NO by carbon over CuO[J]. Applied Catalysis B: Environmental, 2008, 79(3): 262-269. |
12 | 胡秋玮, 向晓东, 周志辉, 等 . 改性活性焦低温烧结烟气脱硝实验研究[J]. 工业安全与环保, 2013, 39(5): 20-23. |
HU Q W , XIANG X D , ZHOU Z H , et al . The experimental study of sintering flue gas denitration at low temperature by modified activated coke[J]. Industrial Safety and Environmental Protection, 2013, 39(5): 20-23. | |
13 | TANG X L , HAO J M , YI H H , et al . Low-temperature SCR of NO with NH3 on Mn-based catalysts modified with cerium[J]. Journal of Rare Earths, 2007, 25(s1): 240-243. |
14 | YAN Z , QU Y X , LIU L L , et al . Promotional effect of rare earth-doped manganese oxides supported on activated semi-coke for selective catalytic reduction of NO with NH3 [J]. Environmental Science and Pollution Research, 2017, 24(31): 24473-24484. |
15 | CHEN J Y , ZHU B Z , SUN Y L , et al . Investigation of low-temperature selective catalytic reduction of NO x with ammonia over Mn-modified Fe2O3/AC catalysts[J]. Journal of the Brazilian Chemical Society, 2018, 1(29): 79-87. |
16 | PENG K , ZHOU J C , XU W T , et al . Microwave irradiation-selective catalytic reduction of NO to N2 by activated carbon at low temperature[J]. Energy & Fuels, 2017, 31(7): 7344-7351. |
17 | 郭彦霞, 刘振宇, 刘清雅, 等 . V2O5/AC同时脱硫脱硝催化剂在氨气氛中再生时的碳烧蚀机理[J]. 催化学报, 2007, 28(6): 514-520. |
GUO Y X , LIU Z Y , LIU Q Y , et al . Mechanism of carbon burn-off on V2O5/AC for simultaneous SO2 and NO removal during regeneration in NH3 atmosphere[J]. Chinese Journal of Catalysis, 2007, 28(6): 514-520. | |
18 | YI H H , ZUO Y R , LIU H Y , et al . Study on coadsorption of SO2, NO, and CO2 over copper-supported activated carbon sorbent in different operating conditions[J]. Environmental Progress & Sustainable Energy, 2015, 34(4): 1044-1049. |
19 | ZHU L L , HUANG B C , WANG W H , et al . Low-temperature SCR of NO with NH3 over CeO2 supported on modified activated carbon fibers[J]. Catalysis Communications, 2011, 12(6): 394-398. |
20 | HOU Y Q , HUANG Z G , GUO S J . Effect of SO2 on V2O5/ACF catalysts for NO reduction with NH3 at low temperature[J]. Catalysis Communications, 2009, 10(11): 1538-1541. |
21 | YOSHIKAWA M , YASUTAKE A , MOCHIDA I . Low-temperature selective catalytic reduction of NO x by metal oxides supported on active carbon fibers[J]. Applied Catalysis A: General, 1998, 173(2): 239-245. |
22 | LU P , LI C T , ZHENG G M , et al . Low temperature selective catalytic reduction of NO by activated carbon fiber loading lanthanum oxide and ceria[J]. Applied Catalysis B: Environmental, 2010, 96(1/2): 157-161. |
23 | SHEN B X , LIU T , SHI Z L , et al . Low-temperature selective catalytic reduction of NO with NH3 based on MnO x -CeO x /ACFN [J]. Frontiers of Chemical Engineering in China, 2008, 2(3): 325-329. |
24 | LU P , XING Y , LI C T , et al . A reusable material with high performance for removing NO at room temperature: performance, mechanism and kinetics[J]. Catalysis Science & Technology, 2016, 6(1): 3520-3528. |
25 | 郑玉婴, 徐哲, 张延兵, 等 . Mn-Fe/ACF催化剂低温选择性催化还原NO[J]. 功能材料, 2014, 45(20): 20142-20145. |
ZHENG Y Y , XU Z , ZHANG Y B , et al . Mn-Fe/ACF catalyst for low-temperature selective catalytic reduction of NO[J]. Journal of Functional Materials, 2014, 45(20): 20142-20145. | |
26 | 陈燕, 李彩亭, 曾光明, 等 . Ce-Fe/ACF催化剂低温选择性催化还原NO的研究[J]. 环境工程学报, 2010, 4(3): 625-628. |
CHEN Y , LI C T , ZENG G M , et al . Research of low-temperature selective catalytic reduction for NO by Ce-Fe/ACF catalyst[J]. Chinese Journal of Environmental Engineering, 2010, 4(3): 625-628. | |
27 | ZHENG Y Y , ZHAN H T , FANG Y X , et al . Uniformly dispersed carbon-supported bimetallic ruthenium-platinum electrocatalysts for the methanol oxidation reaction[J]. Journal of Materials Science, 2017, 52(6): 3457-3466. |
28 | ZHANG Y B , XU Z , WANG X , et al . Fabrication of Mn-FeO x /CNTs catalysts for low temperature NO reduction with NH3 [J]. Nano, 2015, 10(4): 1550050. |
29 | WANG L , ZHAO J H , BAI S L , et al . Significant catalytic effects induced by the electronic interactions between carboxyl and hydroxyl group modified carbon nanotube supports and vanadium species for NO reduction with NH3 at low temperature[J]. Chemical Engineering Journal, 2014, 254: 399-409. |
30 | LU X L , ZHENG Y Y , ZHANG Y B , et al . Low-temperature selective catalytic reduction of NO over carbon nanotubes supported MnO2 fabricated by co-precipitation method[J]. Micro & Nano Letters, 2015, 10(11): 666-669. |
31 | FANG C , ZHANG D S , SHI L Y , et al . Highly dispersed CeO2 on carbon nanotubes for selective catalytic reduction of NO with NH3 [J]. Catal. Sci. Technol., 2013, 3(3): 803-811. |
32 | LI Q , YANG H S , MA Z X, et al . Selective catalytic reduction of NO with NH3 over CuO x -carbonaceous materials[J]. Catalysis Communications, 2012, 17: 8-12. |
33 | ZHANG D S , ZHANG L , FANG C , et al . MnO x -CeO x /CNTs pyridine-thermally prepared via a novel in situ deposition strategy for selective catalytic reduction of NO with NH3 [J]. RSC Advances, 2013, 3(23): 8811-8819. |
34 | ZHANG Y B , ZHENG Y Y , ZOU H Q , et al . One-step synthesis of ternary MnO2-Fe2O3-CeO2-Ce2O3/CNT catalysts for use in low-temperature NO reduction with NH3 [J]. Catalysis Communications, 2015, 71: 46-50. |
35 | CAI S X , HU H , LI H R , et al . Design of multi-shell Fe2O3@MnO x @CNTs for the selective catalytic reduction of NO with NH3: improvement of catalytic activity and SO2 tolerance[J]. Nanoscale, 2016, 8(6): 3588-3598. |
36 | ZHANG L , ZHANG D S , ZHANG J P , et al . Design of meso-TiO2@MnO x -CeO x /CNTs with a core–shell structure as deNOx catalyst: promotion of activity, stability and SO2-tolerance[J]. Nanoscale, 2013, 5(20): 9821-9829. |
37 | HUQ M M, HSIEH C T , HO C Y . Preparation of carbon nanotube-activated carbon hybrid electrodes by electrophoretic deposition for supercapacitor applications[J]. Diamond and Related Materials, 2016, 62: 58-64. |
38 | ZHANG X L , LU Z S , TANG Y N , et al . Depletion NO x made easy by nitrogen doped graphene[J]. Catalysis Letters, 2014, 144(6): 1016-1022. |
39 | 焦金珍, 李时卉, 黄碧纯 . 石墨烯负载MnO x 催化剂的制备及其低温NH3-SCR活性[J]. 物理化学学报, 2015, 31(7): 1383-1390. |
JIAO J Z , LI S H , HUANG B C . Preparation of manganese oxides supported on graphene catalysts and their activity in low-temperature NH3-SCR[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1383-1390. | |
40 | LU X N , SONG C Y , CHANG C C , et al . Manganese oxides supported on TiO2-graphene nanocomposite catalysts for selective catalytic reduction of NO x with NH3 at low temperature[J]. Industrial & Engineering Chemistry Research, 2014, 53(29): 11601-11610. |
41 | LU X N , SONG C Y , JIA S H , et al . Low-temperature selective catalytic reduction of NO x with NH3 over cerium and manganese oxides supported on TiO2-graphene[J]. Chemical Engineering Journal, 2015, 260: 776-784. |
42 | XIAO X , SHENG Z Y , YANG L , et al . Low-temperature selective catalytic reduction of NO x with NH3 over a manganese and cerium oxide/graphene composite prepared by a hydrothermal method[J]. Catalysis Science & Technology, 2016, 6(5): 1507-1514. |
43 | YOU X C , SHENG Z Y , YU D Q , et al . Influence of Mn/Ce ratio on the physicochemical properties and catalytic performance of graphene supported MnO x -CeO2 oxides for NH3-SCR at low temperature[J]. Applied Surface Science, 2017, 423: 845-854. |
44 | TANG X L , LI C L , YI H H , et al . Facile and fast synthesis of novel Mn2CoO4@rGO catalysts for the NH3-SCR of NO x at low temperature[J]. Chemical Engineering Journal, 2018, 333: 467-476. |
45 | OUZZINE M , CIFREDO G A , GATICA J M , et al . Original carbon-based honeycomb monoliths as support of Cu or Mn catalysts for low-temperature SCR of NO: effects of preparation variables[J]. Applied Catalysis A: General, 2008, 342(1/2): 150-158. |
46 | VALDÉS-SOLÍS T , MARBAN G , FUERTES A B . Low-temperature SCR of NO x with NH3 over carbon-ceramic cellular monolith-supported manganese oxides[J]. Catalysis Today, 2001, 69(1/2/3/4): 259-264. |
47 | 安百钢, 黄芬, 李莉香, 等 . 活化和氮掺杂炭层包覆碳纳米管载铂催化剂电催化性能研究[J]. 功能材料, 2013, 17(23): 3435-3438. |
AN B G , HUANG F , LI L X , et al . Electrocatalytical performance of the activated and the nitrogen-doped carbon layer coated carbon nanotubes loaded with platinum[J]. Journal of Functional Materials, 2013, 17(23): 3435-3438. | |
48 | 李海涛, 陈昊然, 张因, 等 . 炭包覆氧化铝负载镍催化剂的制备和表征及其催化加氢性能[J]. 催化学报, 2011, 32(1): 111-117. |
LI H T , CHEN H R , ZHANG Y , et al . Preparation and characterization of carbon-covered alumina supported Ni catalyst and its catalytic performance for hydrogenation[J]. Chinese Journal of Catalysis, 2011, 32(1): 111-117. | |
49 | 胡文渊, 马磊, 张群峰, 等 . 涂覆型介孔炭/蜂窝陶瓷整体式催化剂制备及应用[J]. 化工生产与技术, 2014, 21(2): 22-26. |
HU W Y , MA L, ZHANG Q F , et al . Preparation and application of coated mesoporous carbon/honeycomb ceramic monolithic catalyst[J]. Chemical Production and Technology, 2014, 21(2): 22-26. | |
50 | TANG X L , HAO J M , YI H H , et al . Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts[J]. Catalysis Today, 2007, 126(3/4): 406-411. |
51 | GUO Q Q , JING W , HOU Y Q , et al . On the nature of oxygen groups for NH3-SCR of NO over carbon at low temperatures[J]. Chemical Engineering Journal, 2015, 270: 41-49. |
52 | GUO Q Q , JING W , CHENG S Z , et al . Promoting role of sulfur groups in selective catalytic reduction of NO with NH3 over H2SO4 modified activated carbons[J]. Korean Journal of Chemical Engineering, 2015, 32(11): 2257-2263. |
53 | 韦正乐, 黄碧纯, 黄华存, 等 . CeO2/ACFN低温选择性催化还原烟气中的NO[J]. 化工进展, 2008, 27(3): 412-416. |
WEI Z L , HUANG B C , HUANG H C , et al . Low-temperature selective catalytic reduction of NO on CeO2/ACFN[J]. Chemical Industry and Engineering Progress, 2008, 27(3): 412-416. | |
54 | YANG D Q , ROCHETTE J , SACGER E . Functionalization of multiwalled carbon nanotubes by mild aqueous sonication[J]. The Journal of Physical Chemistry B, 2005, 109(16): 7788-7794. |
55 | SAMOJEDEN B , GRZYBEK T . The influence of the promotion of N-modified activated carbon with iron on NO removal by NH3-SCR (selective catalytic reduction)[J]. Energy, 2016, 116: 1484-1491. |
56 | LIN Y T , LI Y R , XU Z C , et al . Transformation of functional groups in the reduction of NO with NH3 over nitrogen-enriched activated carbons[J]. Fuel, 2018, 223: 312-323. |
57 | 吴海苗, 王晓波, 归柯庭 . 以活性炭为载体的负载型催化剂的SCR脱硝性能[J]. 东南大学学报(自然科学版), 2013, 43(4): 814-818. |
WU H M , WANG X B , GUI K T . Performance of SCR denitration of impregnated catalysts using activated carbon as support[J]. Journal of Southeast University(Natural Science Edition), 2013, 43(4): 814-818. | |
58 | REN S , YANG J , ZHANG T S , et al . Role of cerium in improving NO reduction with NH3 over Mn-Ce/ASC catalyst in low-temperature flue gas[J]. Chemical Engineering Research and Design, 2018, 133: 1-10. |
59 | 刘清雅, 刘振宇, 李成岳 . NH3在选择性催化还原NO过程中的吸附与活化[J]. 催化学报, 2006, 27(7): 636-646. |
LIU Q Y , LIU Z Y , LI C Y . Adsorption and activation of NH3 during selective catalytic reduction of NO by NH3 [J]. Chinese Journal of Catalysis, 2006, 27(7): 636-646. | |
60 | BAI S L , ZHAO J , WANG L , et al . Study of low-temperature selective catalytic reduction of NO by ammonia over carbon-nanotube-supported vanadium[J]. Journal of Fuel Chemistry and Technology, 2009, 37(5): 583-587. |
61 | ZHU Z P , LIU Z Y , NIU H X , et al . Mechanism of SO2 promotion for NO Reduction with NH3 over activated carbon-supported vanadium oxide catalyst[J]. Journal of Catalysis, 2001, 197(1): 6-16. |
62 | 胡明江, 王忠, 祁利巧 . MnO x -CeO2/ACF型催化剂低温去除柴油机NO x 研究[J]. 燃烧科学与技术, 2012, 18(3): 242-247. |
HU M J , WANG Z , QI L Q . Low-temperature NO x removal of diesel engine with MnO x -CeO2/ACF catalyst[J]. Journal of Combustion Science and Technology, 2012, 18(3): 242-247. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[15] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |