Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 344-364.DOI: 10.16085/j.issn.1000-6613.2018-1216
• Materials science and technology • Previous Articles Next Articles
Wei JIANG(),Chao YANG,Shaojun YUAN,Bin LIANG()
Received:
2018-06-11
Revised:
2018-11-09
Online:
2019-01-05
Published:
2019-01-05
Contact:
Bin LIANG
通讯作者:
梁斌
作者简介:
蒋炜(1976—),男,教授,博士生导师。E-mail:<email>weijiang@scu.edu.cn</email>。|梁斌,教授,博士生导师。E-mail:<email>liangbin@scu.edu.cn</email>。
基金资助:
CLC Number:
Wei JIANG, Chao YANG, Shaojun YUAN, Bin LIANG. Bioinspired superhydrophobic metal materials: preparation methods and applications in chemical engineering[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 344-364.
蒋炜, 杨超, 袁绍军, 梁斌. 仿生超疏水金属材料制备技术及在化工领域应用进展[J]. 化工进展, 2019, 38(01): 344-364.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1216
1 | FORBES P . Self-cleaning materials[J]. Scientific American, 2008, 299:88-95. |
2 | GENZER J , MARMUR A . Biological and synthetic self-cleaning surfaces[J]. MRS Bulletin, 2008, 33: 742-746. |
3 | HOWARTER J A , YOUNGBLOOD J P . Self-cleaning and next generation anti-fog surfaces and coatings[J]. Macromolecular Rapid Communications, 2008, 29: 455-466. |
4 | 张娟芳, 吴永民, 余江龙 . 超疏水材料的应用状况和市场前景分析[J]. 经济师, 2014(10): 265-266. |
ZHANG J F , WU Y M , YU J L . Application status and market prospects of superhydrophobic materials[J]. Economist, 2014(10): 265-266. | |
5 | HE J , MAO M , LU Y , et al . Superhydrophobic anodized Fe surface modified with fluoroalkylsilane for application in LiBr-water absorption refrigeration process[J]. Industrial & Engineering Chemistry Research, 2017, 56: 495-504. |
6 | BARTHLOTT W . Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202: 1-8. |
7 | KIJLSTRA J , REIHS K , KLAMT A . Roughness and topology of ultra-hydrophobic surfaces[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2002, 206: 521-529. |
8 | MARMUR A . The Lotus effect: superhydrophobicity and metastability[J]. Langmuir, 2004, 20: 3517-9. |
9 | AUTUMN K , SIYYI M , LIANG Y A , et al . Evidence for van der Waals adhesion in gecko setae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 12252-12256. |
10 | FENG L , LI S , LI Y , et al . Super‐hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 2003, 14: 1857-1860. |
11 | GAO X , JIANG L . Biophysics: water-repellent legs of water striders[J]. Nature, 2004, 432: 36. |
12 | GAO X , YAN X , YAO X , et al . The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 2010, 19: 2213-2217. |
13 | GUO Z , LIU W . Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure[J]. Plant Science, 2007, 172: 1103-1112. |
14 | FENG L , ZHANG Y N , XI J M , et al . Petal effect: a superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24: 4114-4119. |
15 | PARKER A R , LAWRENCE C R . Water capture by a desert beetle[J]. Nature, 2001, 414: 33-34. |
16 | ZHENG Y , GAO X , JIANG L . Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 2007, 3: 178-182. |
17 | NEINHUIS C , BARTHLOTT W . Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79: 667-677. |
18 | KIM S H . Fabrication of superhydrophobic surfaces[J]. Journal of Adhesion Science and Technology, 2008, 22: 235-250. |
19 | ZHAO X , HU T , ZHANG J . Superhydrophobic coatings with high repellency to daily consumed liquid foods based on food grade waxes[J]. Journal of Colloid and Interface Science, 2018, 515: 255-263. |
20 | DAS S , KUMAR S , SAMAL S K , et al . A review on superhydrophobic polymer nanocoatings: recent development and applications[J]. Industrial & Engineering Chemistry Research, 2018, 57: 2727-2745. |
21 | WANG S , LIU K , XI Y , et al . Bioinspired surfaces with superwettability: new insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115: 8230-8293. |
22 | LIU K , YAO X , JIANG L . Recent developments in bio-inspired special wettability[J]. Chemical Society Reviews, 2010, 39: 3240-3255. |
23 | YOUNG T . An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. |
24 | NISHINO T , MEGURO M , NAKAMAE K , et al . The lowest surface free energy based on—CF3 alignment[J]. Langmuir, 1999, 15: 4321-4323. |
25 | WENZEL R N . Resistance of solid sufaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28: 988-994. |
26 | CASSIE A B D , BAXTER S . Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
27 | LAFUMA A , QUÉRÉ D . Superhydrophobic states[J]. Nature Materials, 2003, 2: 457-460. |
28 | WANG S , JIANG L . Definition of superhydrophobic states[J]. Advanced Materials, 2007, 19: 3423-3424. |
29 | GAO X , GUO Z . Biomimetic superhydrophobic surfaces with transition metals and their oxides: a review[J]. Journal of Bionic Engineering, 2017, 14: 401-439. |
30 | WANG S , FENG L , JIANG L . One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces[J]. Advanced Materials, 2006, 18: 767-770. |
31 | SHIRTCLIFFE N J , MCHALE G , NEWTON M I , et al . Wetting and wetting transitions on copper-based super-hydrophobic surfaces[J]. Langmuir, 2005, 21: 937-43. |
32 | QIAN B , SHEN Z . Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates[J]. Langmuir, 2005, 21: 9007-9009. |
33 | FU X , HE X . Fabrication of super-hydrophobic surfaces on aluminum alloy substrates[J]. Applied Surface Science, 2008, 255: 1776-1781. |
34 | WANG Y , WANG W , ZHONG L , et al . Super-hydrophobic surface on pure magnesium substrate by wet chemical method[J]. Applied Surface Science, 2010, 256: 3837-3840. |
35 | QI Y , CUI Z , LIANG B , et al . A fast method to fabricate superhydrophobic surfaces on zinc substrate with ion assisted chemical etching[J]. Applied Surface Science, 2014, 305: 716-724. |
36 | WANG Y , GU Z , XIN Y , et al . Facile formation of super-hydrophobic nickel coating on magnesium alloy with improved corrosion resistance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538: 500-505. |
37 | CHENG Z , DU M , LAI H , et al . From petal effect to lotus effect: a facile solution immersion process for the fabrication of super-hydrophobic surfaces with controlled adhesion[J]. Nanoscale, 2013, 5: 2776-2783. |
38 | SARAKAR D K , SALEEMA N . One-step fabrication process of superhydrophobic green coatings[J]. Surface & Coatings Technology, 2010, 204: 2483-2486. |
39 | WANG Y , LIU X , ZHANG H , et al . Superhydrophobic surfaces created by a one-step solution-immersion process and their drag-reduction effect on water[J]. RSC Advances, 2015, 5: 18909-18914. |
40 | XU J , XU J , CAO Y , et al . Fabrication of non-flaking, superhydrophobic surfaces using a one-step solution-immersion process on copper foams[J]. Applied Surface Science, 2013, 286: 220-227. |
41 | VARSHNEY P , MOHAPATRA S S . Durable and regenerable superhydrophobic coatings for brass surfaces with excellent self-cleaning and anti-fogging properties prepared by immersion technique[J]. Tribology International, 2018, 123: 17-25. |
42 | LOMGA J , VARSHNEY P , NANDA D , et al . Fabrication of durable and regenerable superhydrophobic coatings with excellent self-cleaning and anti-fogging properties for aluminium surfaces[J]. Journal of Alloys and Compounds, 2017, 702: 161-170. |
43 | DARMANIN T , TAFFIN DE GIVENCHY E , AMIGONI S , et al . Superhydrophobic surfaces by electrochemical processes[J]. Advanced Materials, 2013, 25: 1378-1394. |
44 | 罗雨婷, 魏建东, 焦正 . 基于阳极氧化技术制备铝基超疏水表面的研究进展[J]. 材料导报, 2016, 30: 89-96. |
LUO Y T , WEI J D , JIAO Z . Review on anodizing technologies for the fabrication of superhydrophobic aluminum-based surfaces[J]. Materials Review, 2016, 30: 89-96. | |
45 | WANG H , DAI D , WU X . Fabrication of superhydrophobic surfaces on aluminum[J]. Applied Surface Science, 2008, 254: 5599-5601. |
46 | NAKAJIMA D , KIKUCHI T , NATSUI S , et al . Superhydrophilicity of a nanofiber-covered aluminum surface fabricated via pyrophosphoric acid anodizing[J]. Applied Surface Science, 2016, 389: 173-180. |
47 | HE S , ZHENG M , YAO L , et al . Preparation and properties of ZnO nanostructures by electrochemical anodization method[J]. Applied Surface Science, 2010, 256: 2557-2562. |
48 | LIANG J , LIU K , WANG D , et al . Facile fabrication of superhydrophilic/superhydrophobic surface on titanium substrate by single-step anodization and fluorination[J]. Applied Surface Science, 2015, 338: 126-136. |
49 | JIANG W , HE J , XIAO F , et al . Preparation and antiscaling application of superhydrophobic anodized CuO nanowire surfaces[J]. Industrial & Engineering Chemistry Research, 2015, 54: 6874-6883. |
50 | JIANG W , HE J , MAO M , et al . Preparation of superhydrophobic Cu mesh and its application in rolling-spheronization granulation[J]. Industrial & Engineering Chemistry Research, 2016, 55: 5545-5555. |
51 | XIAO F , YUAN S , LIANG B , et al . Superhydrophobic CuO nanoneedle-covered copper surfaces for anticorrosion[J]. Journal of Materials Chemistry A, 2015, 3: 4374-4388. |
52 | LIU W , LUO Y , SUN L , et al . Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating[J]. Applied Surface Science, 2013, 264: 872-878. |
53 | DONG J , OUYANG X , HAN J , et al . Superhydrophobic surface of TiO2 hierarchical nanostructures fabricated by Ti anodization[J]. Journal of Colloid and Interface Scince, 2014, 420: 97-100. |
54 | MIAO J Y , CAI Y , CHAN Y F , et al . A novel carbon nanotube structure formed in ultra-long nanochannels of anodic aluminum oxide templates[J]. Journal of Physical Chemistry B, 2006, 110: 2080-2083. |
55 | THOMPSON G E , WOOD G C . Porous anodic film formation on aluminium[J]. Nature, 1981, 290: 230-232. |
56 | HUANG Y , SARKAR D K , CHEN X G . A one-step process to engineer superhydrophobic copper surfaces[J]. Materials Letters, 2010, 64: 2722-2724. |
57 | LI M , ZHAI J , LIU H , et al . Electrochemical deposition of conductive superhydrophobic zinc oxide thin films[J]. The Journal of Physical Chemistry B, 2003, 107: 9954-9957. |
58 | ZHANG X , SHI F , YU X , et al . Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface[J]. Journal of the American Chemical Society, 2004, 126: 3064-3065. |
59 | ZHAO N , SHI F , WANG Z , et al . Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces[J]. Langmuir, 2005, 21: 4713-4716. |
60 | JAIN R , PITCHUMANI R . Fabrication and characterization of zinc-based superhydrophobic coatings[J]. Surface and Coatings Technology, 2018, 337: 223-231. |
61 | HU Y W , LIU S , HUANG S Y , et al . Fabrication of superhydrophobic surfaces of titanium dioxide and nickel through electrochemical deposition on stainless steel substrate[J]. Key Engineering Materials, 2010, 434/435: 496-498. |
62 | XIONG J , SARKAR D K , CHEN X G . Superhydrophobic honeycomb-like cobalt stearate thin films on aluminum with excellent anti-corrosion properties[J]. Applied Surface Science, 2017, 407: 361-370. |
63 | KANG Z , LI W . Facile and fast fabrication of superhydrophobic surface on magnesium alloy by one-step electrodeposition method[J]. Journal of Industrial and Engineering Chemistry, 2017, 50: 50-56. |
64 | WANG H , HU Z , ZHU Y , et al . Toward easily enlarged superhydrophobic materials with stain-resistant, oil-water separation and anticorrosion function by a water-based one-step electrodeposition method[J]. Industrial & Engineering Chemistry Research, 2017, 56: 933-941. |
65 | GUO Z , CHEN X , LI J , et al . ZnO/CuO hetero-hierarchical nanotrees array: hydrothermal preparation and self-cleaning properties[J]. Langmuir, 2011, 27: 6193-200. |
66 | LI J , JING Z , YANG Y , et al . From Cassie state to Gecko state: a facile hydrothermal process for the fabrication of superhydrophobic surfaces with controlled sliding angles on zinc substrates[J]. Surface and Coatings Technology, 2014, 258: 973-978. |
67 | OU J , HU W , XUE M , et al . Superhydrophobic surfaces on light alloy substrates fabricated by a versatile process and their corrosion protection[J]. ACS Applied Materials & Interfaces, 2013, 5: 3101-3107. |
68 | LI L , HUANG T , LEI J , et al . Robust biomimetic-structural superhydrophobic surface on aluminum alloy[J]. ACS Applied Materials & Interfaces, 2015, 7: 1449-1457. |
69 | 蒋春隆, 李文, 贾俊 . 水热法制备片状花簇Co3O4 微纳结构超疏水表面及其性能[J]. 稀有金属与硬质合金, 2015(1): 39-45. |
JIANG C L , LI W , JIA J . Hydrothermal preparation and properties of flaky-cluster Co3O4 superhydrophobic surface with micro/nano-sized microstructure[J]. Rare Metals and Cemented Catbides, 2015(1): 39-45. | |
70 | GUO F , SU X , HOU G , et al . Fabrication of superhydrophobic TiO2 surface with cactus-like structure by a facile hydrothermal approach[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 395: 70-74. |
71 | XIAO C , YAN J , LI T . Fabrication and superhydrophobic property of ZnO micro/nanocrystals via a hydrothermal route[J]. Journal of Nanomaterials, 2014, 2014: 1-6. |
72 | FENG L , ZHU Y , WANG J , et al . One-step hydrothermal process to fabricate superhydrophobic surface on magnesium alloy with enhanced corrosion resistance and self-cleaning performance[J]. Applied Surface Science, 2017, 422: 566-573. |
73 | ZHANG X , SHEN J , HU D , et al . A rapid approach to manufacture superhydrophobic coating on magnesium alloy by one-step method[J]. Surface and Coatings Technology, 2018, 334: 90-97. |
74 | KANG Z , ZHANG J , NIU L . A one-step hydrothermal process to fabricate superhydrophobic hydroxyapatite coatings and determination of their properties[J]. Surface and Coatings Technology, 2018, 334: 84-89. |
75 | HOSONO E , FUJIHARA S , HONMA I , et al . Superhydrophobic perpendicular nanopin film by the bottom-up process[J]. Journal of the American Chemical Society, 2005, 127: 13458-13459. |
76 | SONG J , XU W , LIU X , et al . Fabrication of superhydrophobic Cu surfaces on Al substrates via a facile chemical deposition process[J]. Materials Letters, 2012, 87: 43-46. |
77 | HUANG L , SONG J , LU Y , et al . Superoleophobic surfaces on stainless steel substrates obtained by chemical bath deposition[J]. Micro & Nano Letters, 2017, 12: 76-81. |
78 | CHEN Y , YANG G , JING Z . Synthesis and characterization of superhydrophobic CeO2/ZnO nanotube arrays with low adhesive force[J]. Materials Letters, 2016, 176: 290-293. |
79 | CHEN T , YAN W , HONGTAO L , et al . Facile preparation of superamphiphobic phosphate-Cu coating on iron substrate with mechanical stability, anti-frosting properties, and corrosion resistance[J]. Journal of Materials Science, 2016, 52: 4675-4688. |
80 | CHO Y J , JANG H , K-S LEE , et al . Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance[J]. Applied Surface Science, 2015, 340: 96-101. |
81 | DE D , SARKAR D K . Superhydrophobic ZnAl double hydroxide nanostructures and ZnO films on Al and glass substrates[J]. Materials Chemistry and Physics, 2017, 185: 195-201. |
82 | VELAYI E , NOROUZBEIGI R . Robust superhydrophobic needle-like nanostructured ZnO surfaces prepared without post chemical-treatment[J]. Applied Surface Science, 2017, 426: 674-687. |
83 | LI J Y , LU S X , XU W G , et al . Preparation of Ag superhydrophobic surface on metal substrates[J]. IOP Conference Series: Materials Science and Engineering, 2018, 292: 012030. |
84 | MA M, MAO Y , GUPTA M , et al . Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition[J]. Macromolecules, 2005, 38: 9742-9748. |
85 | CRICK C R , BEAR J C , KAFIZAS A , et al . Superhydrophobic photocatalytic surfaces through direct incorporation of titania nanoparticles into a polymer matrix by aerosol assisted chemical vapor deposition[J]. Advanced Materials, 2012, 24: 3505-3508. |
86 | CRICK C R , BEAR J C , SOUTHERN P , et al . A general method for the incorporation of nanoparticles into superhydrophobic films by aerosol assisted chemical vapour deposition[J]. Journal of Materials Chemistry A, 2013, 1: 4336-4344. |
87 | REZAEI S , MANOUCHERI I , MORADIAN R , et al . One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication[J]. Chemical Engineering Journal, 2014, 252: 11-16. |
88 | ALJUMAIL M M , ALSAADI M A , DAS R , et al . Optimization of the synthesis of superhydrophobic carbon nanomaterials by chemical vapor deposition[J]. Scientific Reports, 2018, 8: 2778. |
89 | J-Y SHIU , C-W KUO , CHEN P , et al . Fabrication of tunable superhydrophobic surfaces by nanosphere lithography[J]. Chemistry of Materials, 2004, 16: 561–564. |
90 | LONG J , FAN P , ZHONG M , et al . Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures[J]. Applied Surface Science, 2014, 311: 461-467. |
91 | FARSHCHIAN B , GATABI J R , BERNICK S M , et al . Scaling and mechanism of droplet array formation on a laser-ablated superhydrophobic grid[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2018, 547: 49-55. |
92 | 李晶, 赵言辉, 于化东, 等 . 铝合金电刷镀与激光微加工耦合制备超疏水表面及其特性[J]. 中国机械工程, 2017, 28(1): 82-87. |
LI J , ZHAO Y H , YU H D , et al . Fabrication and properties of superhydrophobic surface on aluminum alloys substrates by brush plating and laser processing technology[J]. China Mechanical Engineering, 2017, 28(1): 82-87. | |
93 | GARCIA-GIRON A , ROMANO J M , LIANG Y , et al . Combined surface hardening and laser patterning approach for functionalising stainless steel surfaces[J]. Applied Surface Science, 2018, 439: 516-524. |
94 | YAN H , RASHID M R B A , SI Y K , et al . Wettability transition of laser textured brass surfaces inside different mediums[J]. Applied Surface Science, 2017, 427: 369-375. |
95 | WANG X C , WANG B , XIE H , et al . Picosecond laser micro/nano surface texturing of nickel for superhydrophobicity[J]. Journal of Physics D: Applied Physics, 2018, 51: 115305. |
96 | FENG L , ZHANG Z , MAI Z , et al . A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angewandte Chemie International Edition, 2004, 43: 2012-2014. |
97 | WU W , WANG X , LIU X , et al . Spray-coated fluorine-free superhydrophobic coatings with easy repairability and applicability[J]. ACS Appllied Materials & Interfaces, 2009, 1: 1656-1661. |
98 | NIU L , KANG Z . Spray deposition process to fabricate Cu2O superhydrophobic surfaces on brass mesh for efficient oil-water separation[J]. Materials Letters, 2017, 210: 97-100. |
99 | LIU H , HUANG J , CHEN Z , et al . Robust translucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation[J]. Chemical Engineering Journal, 2017, 330: 26-35. |
100 | XU P , PERSHIN L , MOSTAGHIMI J , et al . Efficient one-step fabrication of ceramic superhydrophobic coatings by solution precursor plasma spray[J]. Materials Letters, 2018, 211: 24-27. |
101 | OGIHARA H , XIE J , OKAGAKI J , et al . Simple method for preparing superhydrophobic paper: spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency[J]. Langmuir, 2012, 28: 4605-4608. |
102 | ZHANG Y , GE D , YANG S . Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness[J]. Journal of Colloid and Interface Science, 2014, 423: 101-107. |
103 | WANG Z , CHEN X , GONG Y , et al . Superhydrophobic nanocoatings prepared by a novel vacuum cold spray process[J]. Surface & Coatings Technology, 2017, 325: 52-57. |
104 | GUO D , HOU K , XU S , et al . Superhydrophobic-superoleophilic stainless steel meshes by spray-coating of a POSS hybrid acrylic polymer for oil-water separation[J]. Journal of Materials Science, 2018, 5: 6403-6413. |
105 | DESSUKY W I E , ABBAS R , SADIK W A , et al . Improved adhesion of superhydrophobic layer on metal surfaces via one step spraying method[J]. Arabian Journal of Chemistry, 2015, 10: 368-377. |
106 | 魏要丽, 杨亮 . 等离子喷涂制备超疏水镀层的研究[J]. 现代化工, 2015, 35(9): 67-68. |
WEI Y L , YANG L . Preparation of super hydrophobic coating by plasma spraying[J]. Modern Chemical Industry, 2015, 35(9): 67-68. | |
107 | 孙小东, 刘刚, 李龙阳, 等 . 热喷涂锌铝合金超疏水涂层的制备及性能[J]. 材料研究学报, 2015(7), 29: 523-528. |
SUN X D , LIU G , LI L Y , et al . Preparation and properties of superhydrophobizted sprayed Zn-Al coating[J]. Chinese Journal of Materials Research, 2015(7), 29: 523-528. | |
108 | LU Y , SATHASIVAM S , SONG J , et al . Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science, 2015, 347: 1132-1135. |
109 | CHEN A , PENG X , KOCZKUR K , et al . Super-hydrophobic tin oxide nanoflowers[J]. Chemical Communications, 2004, 17: 1964-1965. |
110 | HOU X , ZHOU F , YU B , et al . Superhydrophobic zinc oxide surface by differential etching and hydrophobic modification[J]. Materials Science & Engineering A, 2007, 452: 732-736. |
111 | 康志新, 郭明杰 . 热氧化法制备超疏水Ti表面及其耐腐蚀性[J]. 金属学报, 2013, 49: 629-634. |
KANG Z X , GUO M J . Fabrication of superhydrophobic Ti surface by thermal oxidation and its anticorrosion property[J]. Acta Metallurgica Sinica, 2013, 49: 629-634. | |
112 | SHI Y , YANG W , FENG X , et al . Fabrication of superhydrophobic ZnO nanorods surface with corrosion resistance via combining thermal oxidation and surface modification[J]. Materials Letters, 2015, 151: 24-27. |
113 | SHI Y , WU Y , FENG X , et al . Fabrication of superhydrophobic-superoleophilic copper mesh via thermal oxidation and its application in oil-water separation[J]. Applied Surface Science, 2016, 367: 493-499. |
114 | GUO M , KANG Z , LI W , et al . A facile approach to fabricate a stable superhydrophobic film with switchable water adhesion on titanium surface[J]. Surface and Coatings Technology, 2014, 239: 227-232. |
115 | JIANG W , MAO M , QIU W , et al . Biomimetic superhydrophobic engineering metal surface with hierarchical structure and tunable adhesion: design of microscale pattern[J]. Industrial & Engineering Chemistry Research, 2016, 56: 907-919. |
116 | THIEME M , FRENZEL R , SCHMIDT S , et al . Generation of ultrahydrophobic properties of aluminium—A first step to self-cleaning transparently coated metal surfaces[J]. Advanced Engineering Materials, 2001, 3: 691-695. |
117 | YOHE S T , COLSON Y L , GRINSTAFF M W . Superhydrophobic materials for tunable drug release: using displacement of air to control delivery rates[J]. Journal of the American Chemical Society, 2012, 134: 2016-2019. |
118 | FÜRSTNER R , BARTHLOTT W , NEINHUIS C , et al . Wetting and self-cleaning properties of artificial superhydrophobic surfaces[J]. Langmuir, 2005, 21: 956-961. |
119 | GANESH V A , RAUT H K , NAIR A S , et al . A review on self-cleaning coatings[J]. Journal of Materials Chemistry, 2011, 21: 16304-16322. |
120 | YAMASHITA H , NAKAO H , TAKEUCHI M , et al . Coating of TiO2 photocatalysts on super-hydrophobic porous teflon membrane by an ion assisted deposition method and their self-cleaning performance[J]. Nuclear Instruments & Methods in Physics Research, 2003, 206: 898-901. |
121 | BLOSSEY R . Self-cleaning surfaces - virtual realities[J]. Nature Materials, 2003, 2: 301-306. |
122 | LI H , YU S , HAN X , et al . A stable hierarchical superhydrophobic coating on pipeline steel surface with self-cleaning, anticorrosion, and anti-scaling properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 503: 43-52. |
123 | CREMALDI J , BHUSHAN B . Fabrication of bioinspired, self-cleaning superliquiphilic/phobic stainless steel using different pathways[J]. Journal of Colloid and Interface Science, 2018, 518: 284-297. |
124 | NINE M J , COLE M A , JOHNSON L , et al . Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties[J]. ACS Applied Materials & Interfaces, 2015, 7: 28482. |
125 | 郑建勇, 钟明强, 冯杰 . 基于超疏水原理的自清洁表面研究进展及产业化状况[J]. 化工进展, 2010, 29(2): 281-284. |
ZHENG J Y , ZHONG M Q , FENG J . Research progress and industrialization status of superhydrophobic self-cleaning surfaces[J]. Chemical Industry and Engineering Progress, 2010, 29(2): 281-284. | |
126 | 李小磊, 张会臣 . 超疏水表面减阻特性的研究进展[J]. 润滑与密封, 2016, 41: 116-122. |
LI X L , ZHANG H C . Research progress in drag reduction of superhydrophobic surfaces[J]. Lubrication Engineering, 2016, 41: 116-122. | |
127 | WATANABE K , UDAGAWA H . Drag reduction of non-newtonian fluids in a circular pipe with a highly water-repellent wall[J]. AIChE Journal, 2001, 47: 225-238. |
128 | DANIELLO R J , WATERHOUSE N E , ROTHSTEIN J P . Drag reduction in turbulent flows over superhydrophobic surfaces[J]. Physics of Fluids, 2009, 21: 625. |
129 | SHIRTCLIFFE N J , MCHALE G , NEWTON M I , et al . Superhydrophobic copper tubes with possible flow enhancement and drag reduction[J]. ACS Applied Materials Interfaces, 2009, 1: 1316-1323. |
130 | LI B , YAO Z , HAO P . Incompressible LBGK simulation of flow characteristics in a micro-channel with patterned superhydrophobic surfaces[J]. Applied Mathematical Modelling, 2015, 39: 300-308. |
131 | LEE C , KIM C J . Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction[J]. Physical Review Letters, 2011, 106: 014502. |
132 | VAKARELSKI I U , MARSTON J O , CHAN D Y , et al . Drag reduction by Leidenfrost vapor layers[J]. Physical Review Letters, 2011, 106: 214501. |
133 | SCHMIDT E , SCHURIG W , SELLSCHOPP W . Condensation of water vapour in film- and drop form[M]. 2018, 4: 544-544. |
134 | CHEN C H , CAI Q , TSAI C , et al . Dropwise condensation on superhydrophobic surfaces with two-tier roughness[J]. Applied Physics Letters, 2007, 90: 53. |
135 | PRESTON D J , MAFRA D L , MIKJKOVIC N , et al . Scalable graphene coatings for enhanced condensation heat transfer[J]. Nano Letters, 2015, 15: 2902-9. |
136 | MILJKOVIC N , WANG E N . Condensation heat transfer on superhydrophobic surfaces[J]. Mrs Bulletin/Materials Research Society, 2013, 38: 397-406. |
137 | ZHU J , LUO Y T , TIAN J , et al . Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance[J]. ACS Applied Materials & Interfaces, 2015, 7: 10660-10665. |
138 | ALWAZZAN M , EGAB K , PENG B L , et al . Condensation on hybrid-patterned copper tubes (I): characterization of condensation heat transfer[J]. International Journal of Heat and Mass Transfer, 2017, 112: 991-1004. |
139 | TOURKINE P , MERRER M L , QUERE D . Delayed freezing on water repellent materials[J]. Langmuir, 2009, 25: 7214. |
140 | CAO L , JONES A K , SIKKA V K , et al . Anti-icing superhydrophobic coatings[J]. Langmuir, 2009, 25: 12444-12448. |
141 | MENINI R , GHALMI Z , FARZANEH M . Highly resistant icephobic coatings on aluminum alloys[J]. Cold Regions Science & Technology, 2011, 65: 65-69. |
142 | RUAN M , LI W , WANG B , et al . Preparation and anti-icing behavior of superhydrophobic surfaces on aluminum alloy substrates[J]. Langmuir, 2013, 29: 8482-8491. |
143 | ZHANG Z , CHEN B , LU C , et al . A novel thermo-mechanical anti-icing/de-icing system using bi-stable laminate composite structures with superhydrophobic surface[J]. Composite Structures, 2017, 180: 933-943. |
144 | FENG L , YAN Z , SHI X , et al . Anti-icing/frosting and self-cleaning performance of superhydrophobic aluminum alloys[J]. Applied Physics A, 2018, 124: 142. |
145 |
RUIZ-CABELLO F J M , IBAÑEZ-IBAÑEZ P , PAZ-GOMEZ G , et al . Fabrication of superhydrophobic metal surfaces for anti-icing applications[J]. Journal of Visualized Experiments, 2018, 138. DOI: 10.3791/57635.
DOI URL |
146 | ZHANG H , LAMB R , LEWIS J . Engineering nanoscale roughness on hydrophobic surface—preliminary assessment of fouling behaviour[J]. Science & Technology of Advanced Materials, 2005, 6: 236-239. |
147 | GENZER J , EFIMENKO K . Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review[J]. Biofouling, 2006, 22: 339-360. |
148 | DAMODARAN V B , MURTHY N S . Bio-inspired strategies for designing antifouling biomaterials[J]. Biomaterials Research, 2016, 20: 18. |
149 | BIXLER G D , BHUSHAN B . Rice and butterfly wing effect inspired low drag and antifouling surfaces: a review[J]. Critical Reviews in Solid State and Materials Sciences, 2014, 40: 1-37. |
150 | ZHANG D , WANG L , QIAN H , et al . Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions[J]. Journal of Coatings Technology and Research, 2015, 13: 11-29. |
151 | LIU T , YIN Y , CHEN S , et al . Super-hydrophobic surfaces improve corrosion resistance of copper in seawater[J]. Electrochimica Acta, 2007, 52: 3709-3713. |
152 | FIHRI A , BOVERO E , Al-SHAHRANI A , et al . Recent progress in superhydrophobic coatings used for steel protection: a review[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520: 378-390. |
153 | XU H , LIU J , CHEN Y , et al . Facile fabrication of superhydrophobic polyaniline structures and their anticorrosive properties[J]. Journal of Applied Polymer Science, 2016, 133: 44248. |
154 | CHENG Y , LU S , XU W , et al . Controlled fabrication of NiO/ZnO superhydrophobic surface on zinc substrate with corrosion and abrasion resistance[J]. Journal of Alloys and Compounds, 2017, 723: 225-236. |
155 | FOROOSHANI H M , ALIOFKHAZRAEI M , ROUHAGHDAM A S . Superhydrophobic aluminum surfaces by mechanical/chemical combined method and its corrosion behavior[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 72: 220-235. |
156 | VANITHAKUMARI S C , GEORGE R P , KAMACHI MUDALI U . Environmental stability and long-term durability of superhydrophobic coatings on titanium[J]. Journal of Materials Engineering and Performance, 2017, 26: 2640-2648. |
157 | ZHANG L , JIANG Y , ZAI W , et al . Fabrication of superhydrophobic calcium phosphate coating on Mg-Zn-Ca alloy and its corrosion resistance[J]. Journal of Materials Engineering and Performance, 2017, 26: 6117-6129. |
158 | ZHAO Y , XIAO X , YE Z , et al . Fabrication of durable copper plating superhydrophobic surface with improved corrosion resistance and oil-water separation properties[J]. Applied Physics A, 2018, 124: 193. |
159 | CUI S , LU S , XU W , et al . Fabrication of robust gold superhydrophobic surface on iron substrate with properties of corrosion resistance, self-cleaning and mechanical durability[J]. Journal of Alloys & Compounds, 2017, 728: 271-281. |
160 | HE T , WANG Y , ZHANG Y , et al . Super-hydrophobic surface treatment as corrosion protection for aluminum in seawater[J]. Corrosion Science, 2009, 51: 1757-1761. |
161 | LIU T L , KIM C J . Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids[J]. Science, 2014, 46: 1096-1100. |
162 | JIANG W , FU H , ZHU Y , et al . Floatable superhydrophobic Ag2O photocatalyst without a modifier and its controllable wettability by particle size adjustment[J]. Nanoscale, 2018, 10: 13661-13672. |
163 | MCBRIDE S A , DASH S , VARANASI K K . Evaporative crystallization in drops on superhydrophobic and liquid-impregnated surfaces[J]. Langmuir, 2018, 34: 12350-12358. |
164 | ZHU H , GUO Z . Understanding the separations of oil/water mixtures from immiscible to emulsions on super-wettable surfaces[J]. Journal of Bionic Engineering, 2016, 13: 1-29. |
165 | AGRAWAL S , VON ARNIM V , STEGMAIER T , et al . Role of surface wettability and roughness in emulsion separation[J]. Separation and Purification Technology, 2013, 107: 19-25. |
166 | ZHANG W , SHI Z , ZHANG F , et al . Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux[J]. Advanced Materials, 2013, 25: 2071-2076. |
167 | LEE C H , JOHNSON N , DRELICH J , et al . The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water-oil filtration[J]. Carbon, 2011, 49: 669-676. |
168 | CHEN X , LU H , JIANG W , et al . De-emulsification of kerosene/water emulsions with plate-type microchannels[J]. Industrial & Engineering Chemistry Research, 2010, 49: 9279-9288. |
169 | WANG Z , XIAO C , WU Z , et al . A novel 3D porous modified material with cage-like structure: fabrication and its demulsification effect for efficient oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5: 5895-5904. |
170 | GE J , SHI L A , WANG Y C , et al . Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill[J]. Nature Nanotechnology, 2017, 12: 434-440. |
171 | YUAN S , CHEN C , RAZA A , et al . Nanostructured TiO2/CuO dual-coated copper meshes with superhydrophilic, underwater superoleophobic and self-cleaning properties for highly efficient oil/water separation[J]. Chemical Engineering Journal, 2017, 328: 497-510. |
172 | WANG F , LEI S , LI C , et al . Superhydrophobic Cu mesh combined with a superoleophilic polyurethane sponge for oil spill adsorption and collection[J]. Industrial & Engineering Chemistry Research, 2014, 53: 7141-7148. |
173 | ZHU J , LIU B , LI L , et al . Simple and green fabrication of super-hydrophobic surface by one-step immersion for continuous oil/water separation[J]. Journal of Physical Chemistry A, 2016, 120: 5617-5623. |
174 | 宁波材料所亲油疏水溢油应急材料实现产业化[J].浙江化工, 2016, 47(5): 16. |
Realization of industrialization of hydrophobic oil spill emergency materials in Ningbo material institute[J]. Zhejiang Chemical Industry, 2016, 47(5): 16. | |
175 | MUMM F , VAN HELVOORT A T , SIKORSKI P . Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems[J]. ACS Nano, 2009, 3: 2647-2652. |
176 | HIZAL F , RUNGRAENG N , LEE J , et al . Nanoengineered superhydrophobic surfaces of aluminum with extremely low bacterial adhesivity[J]. ACS Applied Materials Interfaces, 2017, 9: 12118-12129. |
177 | LI Y , BI J , WANG S , et al . Bio-inspired edible superhydrophobic interface for reducing residual liquid food[J]. Journal of Agricultural & Food Chemistry, 2018, 66: 2143-2150. |
178 | HE J , LI B , WU H , et al . Interaction of miscible solutions and superhydrophobic surfaces[J]. Surface Engineering, 2018, 34: 1-7. |
[1] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[5] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[6] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[7] | QI Zhicheng, MA Runmei, LI Shuangxi, LIU Lijing, YAN Xinxin. Sealing performance and deformation failure analysis of high pressure flange metal O-ring with open holes [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 166-174. |
[8] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[9] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | LIN Xiaopeng, XIAO Youhua, GUAN Yichen, LU Xiaodong, ZONG Wenjie, FU Shenyuan. Recent progress of flexible electrodes for ion polymer-metal composites (IPMC) [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4770-4782. |
[12] | LI Weihua, YU Qianwen, YIN Junquan, WU Yinkai, SUN Yingjie, WANG Yan, WANG Huawei, YANG Yufei, LONG Yuyang, HUANG Qifei, GE Yanchen, HE Yiyang, ZHAO Lingyan. Leaching behavior of heavy metals from broken ton bags filled with fly ash in acid rain environment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4917-4928. |
[13] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[14] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[15] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |