Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 365-381.DOI: 10.16085/j.issn.1000-6613.2018-1134
• Materials science and technology • Previous Articles Next Articles
Meng LI1,2(),Yujian YAO1,2,Xuan ZHANG1,2(),Lianjun WANG1,2()
Received:
2018-05-31
Revised:
2018-10-09
Online:
2019-01-05
Published:
2019-01-05
Contact:
Xuan ZHANG,Lianjun WANG
李猛1,2(),姚宇健1,2,张轩1,2(),王连军1,2()
通讯作者:
张轩,王连军
作者简介:
李猛(1990—),男,博士研究生,从事分离膜的研究。E-mail: <email>Lemon_go8@163.com</email>。|张轩,副教授,博士生导师,研究方向为高分子复合膜的分子设计及应用。E-mail:<email>xuanzhang@njust.edu.cn</email>|王连军,教授,博士生导师,研究方向为膜分离技术在水处理方面的应用。E-mail:<email>wanglj@njust.edu.cn</email>
基金资助:
CLC Number:
Meng LI, Yujian YAO, Xuan ZHANG, Lianjun WANG. Nanomaterials for enhancing thin-film composite: design, fabrication, and application[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 365-381.
李猛, 姚宇健, 张轩, 王连军. 薄层复合膜的纳米改性:设计、制备及应用[J]. 化工进展, 2019, 38(01): 365-381.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1134
纳米材料 | 掺杂层 | 制备方法 | 性能表现 | 文献 |
---|---|---|---|---|
Ag NPs | PA活性层 | 界面聚合 | 通量及盐截留变化不大, 抗菌性提高 | [90] |
Ag NPs | PA活性层 | 界面聚合 | 膜表面亲水性增强, 膜通量及抗菌性提高, 盐截留率基本不变 | [45] |
SMW CNTs | PA活性层 | 界面聚合 | TFN-0.01%膜的纯水渗透系数高达13.2L/(m2·h·bar), 是原始TFC膜的1.6倍, 并且对硫酸钠的截留率达到96.8%; 此外,以BSA作为特征污染物, 改性膜的FRR达到91.2%。高于TFC膜(82%), 具有良好的抗污染性能 | [62] |
ZIF-8/GO | PA活性层 | 界面聚合 | 通量提高52%, 盐截留几乎不变。具有较好的抗菌性, 对大肠杆菌灭菌性达到84.4% | [95] |
HNTs | PA活性层 | 界面聚合 | 抗污性提高。以BSA作为特征污染物, 改性膜的FRR>96% | [106] |
GODs | PA活性层 | 界面聚合 | 膜表面亲水性增强,改性膜通量是普通膜的6.8倍。以BSA作为特征污染物,改性膜的水通量下降率(DRt)为24.7%, FRR为91.9%, 抗污性明显增强 | [107] |
TiO2@GO | PA活性层 | 界面聚合 | 亲水性增强;在BSA污染下, 最优改性膜DRt为24%, FRR>95% | [108] |
GO-ODA | PA活性层 | 界面聚合 | 纯水渗透系数8.3L/(m2·h·bar)。耐氯性: 3000μL/L NaClO, pH=8, 3h, 改性后的TFC对硫酸钠的截留仍保持在90%以上 | [109] |
GO | PA活性层 | 界面聚合 | 膜表面粗糙度下降, 亲水性及水通量提升。耐氯性: 2000μL/L, pH=7, 24h, 改性后的膜对氯化钠截留基本不变, 99.2% | [110] |
rGO/TiO2 | PA活性层 | 界面聚合 | 亲水性、荷负电性增强; 抗污性增强,DRt仅为25%。耐氯性: 2000mg/L NaClO, pH=4, 改性后的RO膜对氯化钠的截留率仅降低3%,而原始膜则降低了30% | [111] |
GO | PA活性层表面 | 表面沉积 | 抗菌性明显增强, 对大肠杆菌的灭菌率达到64.5% | [94] |
GO | PA活性层表面 | 表面沉积 | 耐氯性: 6000μL/L, pH=11, 2h后氯化钠截留从95.3%降到91.6%; 16h后氯化钠截留降到75% | [112] |
GO | PA活性层表面 | 层层组装 | 膜表面亲水性增强, 粗糙度降低,抗污耐氯性能增强 | [70] |
GO/Ag | PA活性层表面 | 化学接枝 | 膜表面亲水性增强, 水接触角小于25°; 对大肠杆菌的灭活率超过95% | [113] |
SCNTs | PA活性层表面 | 化学接枝 | 抗菌性能明显增强, 对大肠杆菌灭菌率超过60% | [114] |
Ag NPs | PA活性层表面 | 化学接枝 | 通量、盐截留几乎不变, 抗菌性明显增强 | [15] |
GO | PSF支撑层 | 相转化 | GO最佳掺量0.25%(质量分数)时, PSF支撑层S值降低, 仅为191μm | [115] |
CN/rGO | PES支撑层 | 相转化 | CN/rGO最佳掺量0.5%(质量分数)时, PES支撑层S值降低到163μm, J w比未改性膜提升20% | [116] |
TiO2 | PSF支撑层 | 相转化 | 改性后PSF支撑层亲水性、孔隙率增加。掺量为1%时, S值最小,为260μm, 正渗透性能提升。但高掺量的情况下(0.75%,1%)膜的J s上升严重 | [103] |
MOFs | PAN支撑层 | 相转化 | 多种MOF材料添加到PAN支撑层中均增大了支撑层的孔隙率, 其中PMSC300最为明显, 其S值降为190μm左右 | [117] |
HTNs | PSF支撑层 | 相转化 | 支撑层孔隙率、亲水性明显增加, S值为370μm | [118] |
纳米材料 | 掺杂层 | 制备方法 | 性能表现 | 文献 |
---|---|---|---|---|
Ag NPs | PA活性层 | 界面聚合 | 通量及盐截留变化不大, 抗菌性提高 | [90] |
Ag NPs | PA活性层 | 界面聚合 | 膜表面亲水性增强, 膜通量及抗菌性提高, 盐截留率基本不变 | [45] |
SMW CNTs | PA活性层 | 界面聚合 | TFN-0.01%膜的纯水渗透系数高达13.2L/(m2·h·bar), 是原始TFC膜的1.6倍, 并且对硫酸钠的截留率达到96.8%; 此外,以BSA作为特征污染物, 改性膜的FRR达到91.2%。高于TFC膜(82%), 具有良好的抗污染性能 | [62] |
ZIF-8/GO | PA活性层 | 界面聚合 | 通量提高52%, 盐截留几乎不变。具有较好的抗菌性, 对大肠杆菌灭菌性达到84.4% | [95] |
HNTs | PA活性层 | 界面聚合 | 抗污性提高。以BSA作为特征污染物, 改性膜的FRR>96% | [106] |
GODs | PA活性层 | 界面聚合 | 膜表面亲水性增强,改性膜通量是普通膜的6.8倍。以BSA作为特征污染物,改性膜的水通量下降率(DRt)为24.7%, FRR为91.9%, 抗污性明显增强 | [107] |
TiO2@GO | PA活性层 | 界面聚合 | 亲水性增强;在BSA污染下, 最优改性膜DRt为24%, FRR>95% | [108] |
GO-ODA | PA活性层 | 界面聚合 | 纯水渗透系数8.3L/(m2·h·bar)。耐氯性: 3000μL/L NaClO, pH=8, 3h, 改性后的TFC对硫酸钠的截留仍保持在90%以上 | [109] |
GO | PA活性层 | 界面聚合 | 膜表面粗糙度下降, 亲水性及水通量提升。耐氯性: 2000μL/L, pH=7, 24h, 改性后的膜对氯化钠截留基本不变, 99.2% | [110] |
rGO/TiO2 | PA活性层 | 界面聚合 | 亲水性、荷负电性增强; 抗污性增强,DRt仅为25%。耐氯性: 2000mg/L NaClO, pH=4, 改性后的RO膜对氯化钠的截留率仅降低3%,而原始膜则降低了30% | [111] |
GO | PA活性层表面 | 表面沉积 | 抗菌性明显增强, 对大肠杆菌的灭菌率达到64.5% | [94] |
GO | PA活性层表面 | 表面沉积 | 耐氯性: 6000μL/L, pH=11, 2h后氯化钠截留从95.3%降到91.6%; 16h后氯化钠截留降到75% | [112] |
GO | PA活性层表面 | 层层组装 | 膜表面亲水性增强, 粗糙度降低,抗污耐氯性能增强 | [70] |
GO/Ag | PA活性层表面 | 化学接枝 | 膜表面亲水性增强, 水接触角小于25°; 对大肠杆菌的灭活率超过95% | [113] |
SCNTs | PA活性层表面 | 化学接枝 | 抗菌性能明显增强, 对大肠杆菌灭菌率超过60% | [114] |
Ag NPs | PA活性层表面 | 化学接枝 | 通量、盐截留几乎不变, 抗菌性明显增强 | [15] |
GO | PSF支撑层 | 相转化 | GO最佳掺量0.25%(质量分数)时, PSF支撑层S值降低, 仅为191μm | [115] |
CN/rGO | PES支撑层 | 相转化 | CN/rGO最佳掺量0.5%(质量分数)时, PES支撑层S值降低到163μm, J w比未改性膜提升20% | [116] |
TiO2 | PSF支撑层 | 相转化 | 改性后PSF支撑层亲水性、孔隙率增加。掺量为1%时, S值最小,为260μm, 正渗透性能提升。但高掺量的情况下(0.75%,1%)膜的J s上升严重 | [103] |
MOFs | PAN支撑层 | 相转化 | 多种MOF材料添加到PAN支撑层中均增大了支撑层的孔隙率, 其中PMSC300最为明显, 其S值降为190μm左右 | [117] |
HTNs | PSF支撑层 | 相转化 | 支撑层孔隙率、亲水性明显增加, S值为370μm | [118] |
1 | RAVANCHI M T , KAGHAZCHI T , KARGARI A . Application of membrane separation processes in petrochemical industry: a review[J]. Desalination, 2009, 235(1): 199-244. |
2 | LAU W J , ISMAIL A F , MISDAN N , et al . A recent progress in thin film composite membrane: a review[J]. Desalination, 2012, 287: 190-199. |
3 | ZHAO H Y . Study on the preparation and structure-function relationship of mixed-matrix reverse osmosis membrane incorporated with carbon nanomaterials[D]. Hangzhou: Zhejiang University, 2015. |
4 | LI Y , QIAN W J , GAO C J , et al . Recent developments in nanofiltration membranes based on nanomaterials[J]. Chin.J. Chem Eng., 2017, 25: 1639-1652. |
5 | FANE A G , WANF R , HU M X . Synthetic membranes for water purification: status and future[J]. Angew. Chem. Int. Ed., 2015,54: 3368-3386. |
6 | SHIN D H , KIM N , LEE Y T , et al . Modification to the polyamide TFC RO membranes for improvement of chlorine-resistance[J]. J. Membr. Sci., 2011, 376: 302-311. |
7 | MAUTER S M , ZUCKER I , ELIMELECH M , et al . The role of nanotechnology in tackling global water challenges[J]. Nature Sustainability, 2018, 1: 166-175. |
8 | PENDERGAST M M , HOEK E M V . A review of water treatment membrane nanotechnologies[J]. Energy Environ. Sci., 2011, 4: 1946-1971. |
9 | LAU W , GRAY S , MATSUURA T , et al . A review on polyamidethin film nanocomposite (TFN) membranes: history, applications, challenges and approaches[J]. Water. Res., 2015, 80: 306-324. |
10 | DONG H , ZHANG L , CHEN H L , et al . Mixed-matrix membrane for water treatment: materials, synthesis and properties[J]. Progress in Chemistry, 2014, 26(12): 2007-2018. |
11 | FATHIZADETH M , AROUJALIAN A , RAISI A . Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process[J]. J. Membr. Sci., 2011, 375: 88-95. |
12 | ZHU B , ZOU L D , DOHERTY C M , et al . Investigation of the effects of ion and water interaction on structure and chemistry of silicalite MFI type zeolite for its potential use as a seawater desalination membrane[J]. J. Mater. Chem., 2010, 20: 4675-4683. |
13 | HUANG H , QU X , JI X , et al . Acid and multivalent ion resistance of thin film nanocomposite RO membranes loaded with silicalite-l nanozeolites[J]. Mater. Chem. A., 2013, 1: 11343-11349. |
14 | LIU Y , WANG F , YANG X . Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films[J]. Micropor. Mesopor. Mat., 2008, 114: 431-439. |
15 | YIN J , YANG Y , HU Z Q , et al . Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling[J]. J. Membr. Sci., 2013, 441: 73-82. |
16 | BAE T H , KIM I C , TAK T M . Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes[J]. J. Membr. Sci., 2006, 275: 1-5. |
17 | NAGUIB M , MASHTALIR O , CARLE J , et al . Two-dimensional transition metal carbides[J]. Acs. Nano., 2012, 6: 1322-1331. |
18 | BARSOUM M W , RADOVIC M . Mechanical properties of the MAX phases[J]. Encyclopedia of Materials: Science and Technology, 2004, 160(s1):1-16. |
19 | LUKASTSKAYA M R . Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341: 1502-1505. |
20 | XU G R , WANG J N , LI C J . Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: surface modifications and nanoparticles incorporations[J]. Desalination, 2013, 328: 83-100. |
21 | GEIM A K , NOVOSELOV K S . The rise of graphene[J].Nat.Mater., 2007, 6(3): 183-191. |
22 | HOLT J K . Carbon nanotubes and nanofluidic transport[J]. Adv. Mater., 2009, 21: 3542-3550. |
23 | XING Y , LI L , CHUSUEI C C , et al . Sonochemical oxidation of multiwalled carbon nanotubes[J]. Langmuir, 2005, 21(9): 4185-4190. |
24 | XUE S M , XU Z L , TANG Y J , et al . Polypiperazine-amide nanofiltration membrane modified by different functionalized multiwalled carbon nanotubes (MWCNTs)[J]. ACS Appl. Mater. Interfaces, 2016, 8: 19135-19144. |
25 | HOLZINGER M , VOSTROWSKY O , HIRSCH A , et al . Sidewall functionalization of carbon nanotubes[J].Angew. Chem. Int. Edit., 2001, 40(21): 4002-4005. |
26 | SUN Z , PINT C L . Towards hybrid superlattices in graphene[J]. Nat. Commun., 2011, 2: 559. |
27 | MU Q , LIU W , XING Y , et al . Protein binding by functionalized multiwalled carbon nanotubes is governed by the surface chemistry of both parties and the nanotube diameter[J].J. Phys Chem. C.,2016, 112(9): 3300-3307. |
28 | ZHANG D , SHI L , FANG J , et al . Preparation and modification of carbon nanotubes[J]. Mater. Lett., 2005, 59(29/30): 4044-4047. |
29 | GEORGAKILAS V , OTYEPKA M , BOURLINOS A B , et al . Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications[J]. Chem. Rev., 2012, 112(11): 6156-6214. |
30 | LU G , MAO S , PARK S , et al . Facile, noncovalent decoration of graphene oxide sheets with nanocrystals[J]. Nano Res., 2009, 2(3): 192-200. |
31 | MAJUMDER M , CHOPRA N , ANDREWS R , et al . Nanoscale hydrodynamics: enhanced flow in carbon nanotubes[J]. Nature, 2005, 438(7064): 44. |
32 | HUMMER G , RASAIAH J C , NOWORYTA J P . Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001, 414(6860): 188-190. |
33 | CORRY B . Water and ion transport through functionalised carbon nanotubes: implications for desalination technology[J].Energy Environ. Sci., 2011, 4(3): 751-759. |
34 | SUK M E , ALUM N R . Water transport through ultra thin graphene[J]. Phys. Chem. Lett., 2010, 1(10): 1590-1594. |
35 | NAIR R R , WU H A , JAYARAM P N , et al . Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444. |
36 | SUMIDA K , ROGOW D L , MASON J A , et a1 . Carbon dioxide capture in metal-organic frameworks[J]. Chem. Rev., 2011, 112(2): 724-781. |
37 | FURUKAWA H , KO N , GO Y B , et a1 . Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990): 424-428. |
38 | WANG Z , COHEN S M . Postsynthetic modification of metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38(5): 1315-1329. |
39 | TANABE K K , COHEN S M . Postsynthetic modification of metal-organic frameworks—A progress report[J]. Chem. Soc. Rev., 2011, 40(2): 498-519. |
40 | LI J R , KUPPLER R J , ZHOU H C . Selective gas adsorption and separation in metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38(5): 1477-1504. |
41 | KITAGAWA S , KITAURA R , NORO S . Functional porous coordination polymers[J]. Angew. Chem. Im. Ed., 2004, 43(18): 2334-2375. |
42 | LI M , ZHANG X , ELIMELECH M , et al . A self-standing, support-free membrane for forward osmosis with no internal concentration polarization[J]. Environ. Sci. Technol. Lett., 2018, 5: 266-271. |
43 | YIN J , DENG B . Polymer-matrix nanocomposite membranes for water treatment[J]. J. Membr. Sci., 2015, 479: 256-275. |
44 | PENDERGAST M M , GHOSH A K , HOCK E M V . Separation performance and interfacial properties of nanocomposite reverse osmosis membranes[J]. Desalination, 2013, 308: 180-185. |
45 | KIM E S , HWANG G , EL-DIN M G , et al . Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment[J]. J. Membr. Sci., 2012, 394: 37-48. |
46 | CHEN G , LIU R X , SHON H K , et al . Open porous hydrophilic supported thin-film composite forward osmosis membrane via co-casting for treatment of high-salinity wastewater[J]. Desalination, 2017, 405: 76-84. |
47 | MA N, WEI J , QI S R , et al . Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes[J]. J. Membr. Sci., 2013, 441: 54-62. |
48 | JEONG B H , HOEK E M V , YAN Y S , et al . Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes[J].J. Membr. Sci., 2007, 294(1/2): 1-7. |
49 | FREGER V . Kinetics of film formation by interfacial polycondensation[J]. Langmuir, 2005, 21: 1884-1894. |
50 | NADLER R , SREBNIK S . Molecular simulation of polyamide synthesis by interfacial polymerization[J]. J. Membr. Sci., 2008, 315: 100-105. |
51 | FREGER V . Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study[J]. Environ. Sci. Technol., 2004, 38(11): 3168-3175. |
52 | PEYRAVI M , JAHANSHAHI M , RAHIMPOUR A , et al . Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration[J]. Chem. Eng. J., 2014, 241: 155-166. |
53 | LI X S , WANG R , WICAKSANA F , et al . Preparation of high performance nanofiltration (NF) membranes incorporated with aquaporin Z[J]. J. Membr. Sci., 2014, 450: 181-188. |
54 | YIN J , KIM E S , YANG J , et al . Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification[J]. J. Membr Sci., 2012, 423/424: 238-246. |
55 | YANG Z , WU Y C , GAO H , et al . A novel thin-film nano-templated composite membrane with in situ silver nanoparticles loading: separation performance enhancement and implications[J]. J. Membr. Sci., 2017, 544: 351-358. |
56 | WANG A N . Preparation and study of polyamide thin composite reverse osmosis membrane filled with modified Silicalite-1[D]. Wuxi: Jiangnan University, 2012. |
57 | WU H Q , TANG B B , WU P Y . Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles[J]. J. Membr. Sci., 2013, 428: 341-348. |
58 | RAJAEIAN B , RAHIMPOUR A , TADE M O , et al . Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles[J]. Desalination, 2013, 313: 176-188. |
59 | SHEN J N , YU C C , RUAN H M , et al . Preparation and characterization of thin-film nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization[J]. J. Membr. Sci., 2013, 442: 18-26. |
60 | ZHAO H , QIU S , WU L , et al . Improving the performance of polyarnide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes[J]. J. Membr. Sci., 2014, 450: 249-256. |
61 | ZHANG L , SHI G Z , QIU S , et al . Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes[J]. Desalin. Water Treat., 2011, 34(1-3): 19-24. |
62 | ZHENG J F , LI M , YU K , et al . Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property[J]. J. Membr. Sci., 2017, 524: 344-353. |
63 | ZHAO F Y , JI Y L , WENG X D , et al . High-flux positively charged nanocomposite nanofiltration membranes filled with poly(dopamine) modified multiwall carbon nanotubes[J]. ACS Appl. Mater. Interfaces, 2016, 8(10): 6693-6700. |
64 | BAE T H , TAK T M . Preparation of TiO2 self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system[J]. J. Membr. Sci., 2005, 266: 1-5. |
65 | BAE T H , KIM I C , TAK T M . Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes[J]. J. Membr. Sci., 2006, 275: 1-5. |
66 | MANSOURPANAH Y , MADAENI S S , RAHIMPOUR A , et al . Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photo-catalyst: performance, characterization and fouling-resistant capability[J]. J. Membr. Sci., 2009, 330: 297-306. |
67 | KWAK S Y , KIM S H , KIM S S . Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling.1.Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane[J]. Environ. Sci. Technol., 2001, 35: 2388-2394. |
68 | KIM S H , KWAK S Y , SOHN B H , et al . Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem[J]. J. Membr. Sci., 2003, 211: 157-165. |
69 | MADAENI S S , GHAEMI N . Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation[J]. J. Membr. Sci., 2007, 303: 221-233. |
70 | CHOI W S , CHOI J K , BANG J N , et al . Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications[J]. ACS Appl. Mater. Interfaces, 2013, 5: 12510-12519. |
71 | HU M , MI B X . Enabling graphene oxide nanosheets as water separation membranes[J]. Environ. Sci. Technol., 2013, 47: 3715-3723. |
72 | PINAR C D , MARY L L . Nanoporous materials in polymeric membranes for desalination[J]. Curr. Opin. Chem. Eng., 2018, 20: 19-27. |
73 | ROY S , NTIM S A , MITRA S , et al . Facile fabrication of superior nanofiltration membranes from interfacially polymerized CNT-polymer composites[J].J. Membr Sci., 2011, 375(1): 81-87. |
74 | CHAN W F , MARAND E , MARTIN S M . Novel zwitterion functionalized carbon nanotube nanocomposite membranes for improved RO performance and surface anti-biofouling resistance[J]. J. Membr. Sci., 2016, 509: 125-137. |
75 | JOSHI R K , CARBONE P , WANG F C , et al . Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754. |
76 | XU Y , GAO X , WANG X , et al . Highly and stably water permeable thin film nanocomposite membranes doped with MIL-101(Cr) nanoparticles for reverse osmosis application[J]. Materials , 2006, 9(11): 1-14. |
77 | MA D C, PEH S B , HAN G , et al . Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: toward enhancement of water flux and salt rejection[J]. ACS Appl. Mater. Interfaces, 2017, 9: 7523-7534. |
78 | SORRIBAS S , GORGOJO P , TELLEZ C , et al . High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration[J].. J.Am Chem Soc., 2013, 135(40): 15201-15208. |
79 | LI Q , WANG Y H , SONG J , et al . Influence of silica nanospheres on the separation performance of thin film composite poly(piperazine-amide) nanofiltration membranes[J]. Appl. Surf. Sci., 2015, 324: 757-764. |
80 | YIN J , ZHU G C , DENG B L . Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification[J]. Desalination, 2016, 379: 93-101. |
81 | BANO S , MAHMOOD A , KIM S J , et al . Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties[J]. J Mater. Chem. A., 2015, 3: 2065-2071. |
82 | WEN P , CHEN Y B , HU X Y , et al . Polyamide thin film composite nanofiltration membrane modified with acyl chlorided graphene oxide[J]. J. Membr. Sci., 2017, 535: 208-220. |
83 | ZARRABI H , YEKAVALANGI M E , VATANPOUR V , et al . Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using amine-functionalized multiwalled carbon nanotube[J]. Desalination, 2016, 394: 83-90. |
84 | HAN Y , JIANG Y Q , GAO C . High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes[J]. ACS Appl. Mater. Interfaces, 2015, 7: 8147-8155. |
85 | ZHU J Y , QIN L J , ULIANA A , et al . Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration[J]. ACS Appl. Mater. Interfaces, 2017, 9:1975-1986. |
86 | RANA D , MATSUURA T . Surface modifications for antifouling membranes[J]. Chem. Rev., 2010, 110: 2448-2471. |
87 | KIM E S , DENG B . Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications[J]. J. Membr. Sci., 2011, 375: 46-54. |
88 | PRANCOIS F , NEJATI S , ELIMELECH M , et al . Antimicrobial properties of graphene oxide nanosheets: why size matters?[J]. ACS Nano, 2015, 9 (7): 7226-7236. |
89 | MORITZ M , GESZKE-MORITZ M . The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles[J]. Chem. Eng. J., 2013, 228: 596-613. |
90 | LEE S Y , KIM H J , PATEL R , et al . Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties[J]. Polym. Adv. Technol., 2007, 18: 562-568. |
91 | RANA D , KIM Y , MATSUURA T , et al . Development of antifouling thin-film-composite membranes for seawater desalination[J]. J. Membr. Sci., 2011, 367: 110-118. |
92 | KIM H J , BAEK Y , CHOI K , et al . The improvement of antibiofouling properties of a reverse osmosis membrane by oxidized CNTs[J]. RSC Advances, 2014, 4(62): 32802-32810. |
93 | ZHENG J F , LI M , ZHANG X , et al . Zwitterionic carbon nanotube assisted thin-film nanocomposite membranes with excellent efficiency for separation of mono/divalent ions from brackish water[J]. J. Mater Chem. A., 2017, 5: 13730-13739. |
94 | PERREAULT F , TOUSLEY M E , ELIMELECH M . Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets[J]. Environ. Sci. Technol. Lett., 2014, 1:71-76. |
95 | WANG J , WANG Y M , ZHANG Y T , et al . Zeolitic imidazolate framework/graphene oxide hybrid nanosheets functionalized thin film nanocomposite membrane for enhanced antimicrobial performance[J]. ACS Appl. Mater. Interfaces, 2016, 8: 25508-25519. |
96 | WATTS P C P , FEARON P K , HSU W K , et al . Carbon nanotubes as polymer antioxidants[J].J. Mater Chem., 2003, 13(3): 491-495. |
97 | YUAN B H , BAO C L , SONG L , et al . Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties[J]. Chem. Eng. J., 2014, 237: 411-420. |
98 | SHI X M , JIANG B B , WANG J D , et al . Influence of wall number and surface functionalization of carbon nanotubes on their antioxidant behavior in high density polyethylene[J]. Carbon, 2012, 50(3): 1005-1013. |
99 | PARK J , CHOI W , KIM S H , et al . Enhancement of chlorine resistance in carbon nanotube based nanocomposite reverse osmosis membranes[J]. Desalin. Water Treat., 2010, 15(1/2/3): 198- 204. |
100 | KIM H J , LIM M Y , JUNG K H , et al . High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and grapheme oxides[J]. J. Mater Chem. A., 2015, 3(13): 6798-6809. |
101 | WANG Y Q , OU R W , GE Q Q , et al . Preparation of polyethersulfone/carbon nanotube substrate for high-performance forward osmosis membrane[J]. Desalination, 2013, 330: 70-78. |
102 | EMADZADEH D , LAU W J , ISMAIL A F . Synthesis of thin film nanocomposite forward osmosis membrane with enhancement in water flux without sacrificing salt rejection[J]. Desalination, 2013, 330: 90-99. |
103 | EMADZADEH D , LAU W J , ISMAIL A F . A novel thin film composite forward osmosis membrane prepared from PSf-TiO2 nanocomposite substrate for water desalination[J]. Chem. Eng. J., 2014, 237: 70-80. |
104 | EMADZADEH D , LAU W J , ISMAIL A F , et al . Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization[J]. J. Membr. Sci., 2014, 449: 74-85. |
105 | WANG Y Q , OU R W , WANG H T , et al . Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane[J]. J. Membr. Sci., 2015, 475: 281-289. |
106 | GHANBARI M , EMADZEDEH D , LAU W J , et al . Synthesis and characterization of novel thin film nanocomposite(TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination[J]. Desalination, 2015, 358:33-41. |
107 | BI R , ZHANG Q , ZHANG R N , et al . Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property[J]. J. Membr. Sci., 2018, 553: 17-24. |
108 | WANG J , WANG Y M , ZHU J Y , et al . Construction of TiO2@graphene oxide incorporated antifouling nanofiltration membrane with elevated filtration performance[J]. J. Membr. Sci., 2017, 533: 279-288. |
109 | XUE S M , JI C H , XU Z L , et al . Chlorine resistant TFN nanofiltration membrane incorporated with octadecylamine-grafted GO and fluorine-containing monomer[J]. J. Membr. Sci., 2018, 545:185-195. |
110 | CHAE H R , LEE J , LEE C H , et al . Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance[J]. J. Membr. Sci., 2015, 483:128-135. |
111 | SAFARPOUR M , KHATAEE A , VATANPOUR V . Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance[J]. J. Membr. Sci., 2015, 489: 43-54. |
112 | SHAO F F , DONG L F , DONG H Z , et al . Graphene oxide modified polyamide reverse osmosis membranes with enhanced chlorine resistance[J] J. Membr. Sci., 2017, 525: 9-17. |
113 | SOROUSH A , MA W, SILVINO, et al . Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets[J]. Environ. Sci-Nano, 2015, 2: 395-405. |
114 | TIRAFERRI A , VECITIS C D , ELIMELECH M . Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties[J]. ACS Appl. Mater. Interfaces, 2011, 3: 2869-2877. |
115 | PARK M J , PHUNTSHO S , HE T . Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes[J]. J. Membr. Sci., 2015, 493: 496-507. |
116 | SAFARPOUR M , KHATAEE A , VATANPOUR V . Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance[J]. J. Membr. Sci. , 2015, 489: 43-54. |
117 | LEE J Y , SHE Q H , HUO F W , et al . Metal-organic frame-work-based porous matrix membranes for improving mass transfer in forward osmosis membranes[J]. J. Membr. Sci., 2015, 492: 392-399. |
118 | GHANBARI M , EMADZEDEH D , LAU W J , et al . Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates[J]. Desalination, 2016, 377:152-162. |
[1] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[2] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[3] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[4] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[5] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[6] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
[7] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[8] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[9] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[10] | WANG Jiaxin, PAN Yong, XIONG Xinyi, WAN Xiaoyue, WANG Jianchao. Reaction process and hazards of dinitrotoluene preparation by one-step catalytic nitration of toluene [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3420-3430. |
[11] | HAN Hengwen, HAN Wei, LI Mingfeng. Research progress in olefin hydration process and the catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3489-3500. |
[12] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[13] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[14] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[15] | YIN Pengzhen, WU Qin, LI Hansheng. Advances in catalysts for liquid-phase selective oxidation of methyl aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2916-2943. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |