Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (03): 1308-1315.DOI: 10.16085/j.issn.1000-6613.2018-1170
Previous Articles Next Articles
Siyun NING1(),Hao YING1(),Wei XU1,Yunjuan SUN1,Hang YIN1,Shuang JIA1,Guanghua LIU2
Received:
2018-06-03
Revised:
2018-07-04
Online:
2019-03-05
Published:
2019-03-05
Contact:
Hao YING
宁思云1(),应浩1(),徐卫1,孙云娟1,尹航1,贾爽1,刘光华2
通讯作者:
应浩
作者简介:
基金资助:
CLC Number:
Siyun NING,Hao YING,Wei XU,Yunjuan SUN,Hang YIN,Shuang JIA,Guanghua LIU. Catalyst steam gasification of charcoal for syngas[J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1308-1315.
宁思云,应浩,徐卫,孙云娟,尹航,贾爽,刘光华. 木炭水蒸气催化气化制取合成气[J]. 化工进展, 2019, 38(03): 1308-1315.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1170
各组分质量分数% | 各元素质量分数/% | |||||
---|---|---|---|---|---|---|
挥发分 | 灰分 | 固定碳 | C | H | O | N |
15.11 | 3.17 | 81.72 | 83.4 | 1.41 | 12.05 | 0.28 |
各组分质量分数% | 各元素质量分数/% | |||||
---|---|---|---|---|---|---|
挥发分 | 灰分 | 固定碳 | C | H | O | N |
15.11 | 3.17 | 81.72 | 83.4 | 1.41 | 12.05 | 0.28 |
催化剂种类 | 合成气各组分体积分数/% | H2/CO | ||||
---|---|---|---|---|---|---|
H2 | CO2 | CO | CH4 | CO+H2 | ||
KOH | 60.47 | 14.1 | 24.33 | 1.10 | 84.80 | 2.48 |
K2CO3 | 58.62 | 15.00 | 24.88 | 1.50 | 83.49 | 2.36 |
KHCO3 | 60.52 | 16.2 | 21.1 | 2.14 | 81.70 | 2.86 |
KNO3 | 61.54 | 17.72 | 18.64 | 2.09 | 80.19 | 3.30 |
催化剂种类 | 合成气各组分体积分数/% | H2/CO | ||||
---|---|---|---|---|---|---|
H2 | CO2 | CO | CH4 | CO+H2 | ||
KOH | 60.47 | 14.1 | 24.33 | 1.10 | 84.80 | 2.48 |
K2CO3 | 58.62 | 15.00 | 24.88 | 1.50 | 83.49 | 2.36 |
KHCO3 | 60.52 | 16.2 | 21.1 | 2.14 | 81.70 | 2.86 |
KNO3 | 61.54 | 17.72 | 18.64 | 2.09 | 80.19 | 3.30 |
KOH质量分数/% | 合成气组分体积分数/% | H2/CO | ||||
---|---|---|---|---|---|---|
H2 | CO2 | CO | CH4 | CO+H2 | ||
0 | 61.52 | 21.8 | 15.0 | 1.63 | 76.55 | 4.09 |
2 | 61.02 | 14.70 | 22.81 | 1.47 | 83.83 | 2.68 |
4 | 60.47 | 14.10 | 24.33 | 1.10 | 84.8 | 2.48 |
6 | 58.67 | 11.46 | 29.04 | 0.83 | 87.71 | 2.02 |
8 | 59.16 | 9.67 | 30.14 | 1.03 | 89.30 | 1.96 |
10 | 59.80 | 8.67 | 30.69 | 0.84 | 90.49 | 1.95 |
KOH质量分数/% | 合成气组分体积分数/% | H2/CO | ||||
---|---|---|---|---|---|---|
H2 | CO2 | CO | CH4 | CO+H2 | ||
0 | 61.52 | 21.8 | 15.0 | 1.63 | 76.55 | 4.09 |
2 | 61.02 | 14.70 | 22.81 | 1.47 | 83.83 | 2.68 |
4 | 60.47 | 14.10 | 24.33 | 1.10 | 84.8 | 2.48 |
6 | 58.67 | 11.46 | 29.04 | 0.83 | 87.71 | 2.02 |
8 | 59.16 | 9.67 | 30.14 | 1.03 | 89.30 | 1.96 |
10 | 59.80 | 8.67 | 30.69 | 0.84 | 90.49 | 1.95 |
水蒸气流量 /g·(min·g)-1 | 合成气组分体积分数/% | H2/CO | ||||
---|---|---|---|---|---|---|
H2 | CO2 | CO | CH4 | CO+H2 | ||
0.10 | 57.17 | 10.54 | 28.66 | 1.63 | 85.83 | 1.99 |
0.15 | 59.02 | 12.78 | 27.17 | 1.03 | 86.19 | 2.17 |
0.2 | 60.54 | 14.08 | 24.29 | 1.10 | 84.83 | 2.49 |
0.25 | 60.34 | 14.77 | 22.70 | 1.19 | 83.01 | 2.78 |
0.3 | 61.03 | 16.96 | 21.58 | 1.57 | 82.61 | 2.73 |
水蒸气流量 /g·(min·g)-1 | 合成气组分体积分数/% | H2/CO | ||||
---|---|---|---|---|---|---|
H2 | CO2 | CO | CH4 | CO+H2 | ||
0.10 | 57.17 | 10.54 | 28.66 | 1.63 | 85.83 | 1.99 |
0.15 | 59.02 | 12.78 | 27.17 | 1.03 | 86.19 | 2.17 |
0.2 | 60.54 | 14.08 | 24.29 | 1.10 | 84.83 | 2.49 |
0.25 | 60.34 | 14.77 | 22.70 | 1.19 | 83.01 | 2.78 |
0.3 | 61.03 | 16.96 | 21.58 | 1.57 | 82.61 | 2.73 |
温度/℃ | 合成气组分体积分数/% | H2/CO | ||||
---|---|---|---|---|---|---|
H2 | CO2 | CO | CH4 | H2+CO | ||
750 | 59.31 | 15.89 | 20.89 | 3.91 | 80.20 | 2.84 |
800 | 59.88 | 15.38 | 22.95 | 1.99 | 82.83 | 2.32 |
850 | 60.47 | 14.10 | 24.33 | 1.10 | 84.8 | 2.48 |
900 | 54.94 | 9.82 | 32.81 | 2.43 | 87.75 | 1.67 |
950 | 55.11 | 7.88 | 36.08 | 0.94 | 91.18 | 1.53 |
温度/℃ | 合成气组分体积分数/% | H2/CO | ||||
---|---|---|---|---|---|---|
H2 | CO2 | CO | CH4 | H2+CO | ||
750 | 59.31 | 15.89 | 20.89 | 3.91 | 80.20 | 2.84 |
800 | 59.88 | 15.38 | 22.95 | 1.99 | 82.83 | 2.32 |
850 | 60.47 | 14.10 | 24.33 | 1.10 | 84.8 | 2.48 |
900 | 54.94 | 9.82 | 32.81 | 2.43 | 87.75 | 1.67 |
950 | 55.11 | 7.88 | 36.08 | 0.94 | 91.18 | 1.53 |
1 | MUNASINGHE P C , KHANAL S K . Biomass-derived syngas fermentation into biofuels: opportunities and challenges.[J]. Bioresour.Technol., 2010, 101(13): 5013-22. |
2 | MCKENDRY P . Energy production from biomass (Part 3): gasification technologies[J]. Bioresource Technology, 2002, 83(1): 55. |
3 | 阴秀丽, 常杰, 汪俊锋, 等 . 生物质合成气合成甲醇[J]. 太阳能学报, 2005, 26(4): 518-522. |
YIN Xiuli , CHANG Jie , WANG Junfeng , et al . Biomass syngas the methanol synthesis from biomass-derived syngas[J]. Acta Energiae Solaris Sinica, 2005, 26(4): 518-522. | |
4 | 蓝平, 蓝丽红, 谢涛,等 . 生物质合成气制备及合成液体燃料研究进展[J]. 化学世界, 2011, 52(7):437-441. |
LAN Ping , LAN Lihong , XIE Tao , et al . Progress of biomass-syngas production and synthetic liquid fuels from biomass-syngas[J]. Chemical World, 2011, 52(7): 437-441 | |
5 | MUNASINGHE P C , KHANAL S K . Chapter 4:Biomass-derived syngas fermentation into biofuels[M]//Biofuels. Amsterdam: Elsevier, 2011:79-98. |
6 | SCHUSTER G , LOFFER G , WEIGL K , et al . Biomass steam gasification——an extensive parametric modeling study[J].Bioresource Technology, 2001, 77(1): 71-79. |
7 | 李琳娜, 应浩, 涂军令, 等 . 木屑高温水蒸气气化制备富氢燃气的特性研究[J]. 林产化学与工业, 2011, 31(5): 18-24. |
LI Linna , YING Hao , TU Junling , et al . High-temperature steam gasification of sawdust for production of hydrogen-rich gas[J]. Chemistry and Industry of Forest Products, 2011,31 (5): 18-24. | |
8 | 涂军令, 应浩, 吴欢,等 . 生物质炭水蒸气气化制取合成气[J]. 太阳能学报, 2013, 34(9):1514-1519. |
TU Junling , YING Hao , WU Huan , et al . Production of synthesis gas by steam gasification of biomass-derived char[J]. Acta Energiae Solaris Sinica, 2013, 34(9): 1514-1519. | |
9 | 贾爽, 应浩, 孙云娟, 等 . 生物质水蒸气气化制取富氢合成气及其应用的研究进展[J]. 化工进展, 2018, 37(2): 497-504. |
JIA Shuang , YING Hao , SUN Yunjuan , et al . Research advance in biomass steam gasification for hydrogen-rich syngas and its application [J]. Chemical Industry and Engineering Progress, 2018, 37 (2): 497-504. | |
10 | NZIHOU A , STANMORE B , SHARROCK P . A review of catalysts for the gasification of biomass char, with some reference to coal[J]. Energy, 2013, 58(3): 305-317. |
11 | PERONDI D , POLETTO P , RESTELATTO D , et al . Steam gasification of poultry litter biochar for bio-syngas production[J]. Process Safety & Environmental Protection, 2017, 109: 478-488. |
12 | FENG Y , ZHANG L , HU Z , et al . Hydrogen-rich gas production by steam gasification of char derived from cyanobacterial blooms (CDCB) in a fixed-bed reactor: influence of particle size and residence time on gas yield and syngas composition[J]. International Journal of Hydrogen Energy, 2010, 35(19): 10212-10217. |
13 | YAN F , LUO S Y , HU Z Q , et al . Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: influence of temperature and steam on hydrogen yield and syngas composition[J]. Bioresource Technology, 2010, 101(14): 5633-5637. |
14 | YAN L , CAO Y , He B . On the kinetic modeling of biomass/coal char co-gasification with steam[J]. Chemical Engineering Journal, 2018, 331: 435-442. |
15 | HUHN F , KLEIN J , JUNTGEN H . Investigations on the alkali-catalysed steam gasification of coal: kinetics and interactions of alkali catalyst with carbon[J]. Fuel, 1983, 62(2): 196-199. |
16 | CHEN Z , DUN Q, SHI Y , et al . High quality syngas production from catalytic coal gasification using disposable Ca(OH)2, catalyst[J]. Chemical Engineering Journal, 2017, 316: 842-849. |
17 | 孙立 . 生物质热解气化原理与技术[M]. 北京: 化学工业出版社, 2013. |
SUN Li . Theory and technology of biomass pyrolysis and gasification[M]. Beijing: Chemical Industry Press, 2013. | |
18 | WAHEED Q M K , WU C , WILLIAMS P T . Hydrogen production from high temperature steam catalytic gasification of bio-char[J]. Journal of the Energy Institute, 2015, 89(2): 222-230. |
19 | NANOU P , MURILLO H E G , SWAAIJ W P M V , et al . Intrinsic reactivity of biomass-derived char under steam gasification conditions-potential of wood ash as catalyst[J]. Chemical Engineering Journal, 2013, 217(2): 289-299. |
20 | 张报安, 黄河, 金玳 . 用动力学参数对炭气化催化剂性能的表征[J]. 大连理工大学学报, 1985(2):9-15. |
ZHANG Bao’an , HUANG He , JIN Dai . Characterization of carbon gasification catalysts by kinetic parameters[J]. Journal of Dalian University of Technology, 1985(2): 9-15. | |
21 | SHANG J Y , WOLF E E . FTIR studies of potassium catalyst-treated gasified coal chars and carbons [J]. Fuel, 1983, 62(2): 252-255. |
22 | HUTTINGER K J , MINGES R . Water vapour gasification of carbon: Improved catalytic activity of potassium chloride using anion exchange[J]. Fuel, 1985, 64(4): 486-490. |
23 | 王永刚, 谢克昌, 凌开成, 等 . 碱金属催化剂在煤气化过程中的作用机理[J]. 太原理工大学学报, 1988(3): 55-65. |
WANG Yonggang , XIE Kechang , LING Kaicheng , et al . Action mechanism of alkali metal catalysis in the gasification of coal/char [J]. Journal of Taiyuan University of Technology, 1988(3): 55-65. | |
24 | SAMS D A , TALVERDIAN T , SHADMAN F . Kinetics of catalyst loss during potassium-catalyzed CO2 gasification of carbon[J]. Fuel, 1985, 64(9): 1208-1214. |
25 | GUERRA L , ROSSI S , RODEIGUES J , et al . Methane production by a combined Sabatier reaction/water electrolysis process[J]. Journal of Environmental Chemical Engineering, 2017, 6(1): 671. |
26 | INAYAT A , AHMAD M M , MUTALIB M I A , et al . Effect of process parameters on hydrogen production and efficiency in biomass gasification using modelling approach[J]. Journal of Applied Sciences, 2010, 10(24): 3183-3190. |
[1] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[2] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[3] | TIAN Yuan, LOU Shujie, MENG Shanru, YAN Jingru, XIAO Haicheng. Recent progress of Co-based catalysts for higher alcohols synthesis form syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1869-1876. |
[4] | RUAN Peng, YANG Runnong, LIN Zirong, SUN Yongming. Advances in catalysts for catalytic partial oxidation of methane to syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1832-1846. |
[5] | LI Wanqi, YANG Fengjuan, JIA Dechen, JIANG Weihong, GU Yang. Biological utilization and conversion of syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 73-85. |
[6] | DENG Shaobi, BIAN Zhoufeng. Application of core-shell structure catalyst in dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 247-254. |
[7] | ZHANG Dazhou, LU Wenxin, SHANG Kuanxiang, HU Yuan, ZHU Fan, ZHANG Zongfei. Reaction network analysis of dimethyl oxalate hydrogenation to methyl glycolate and recent progress in the heterogeneous catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 204-214. |
[8] | CAO Zhengkai, MI Xiaobin, WU Ziming, SUN Shike, CAO Junfeng, PENG Deqiang, LIANG Xiangcheng. Pressure drop analysis and application optimization of the unit for removing dust in coal syngas purification [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 15-21. |
[9] | SHI Xuan, YANG Dongyuan, HU Haobin, WANG Jiaofei, ZHANG Zhuangzhuang, HE Jianxun, DAI Chengyi, MA Xiaoxun. One-step preparation of toluene/xylene from benzene and syngas over ZnAlCrO x &HZSM-5 bifunctional catalyst [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 247-259. |
[10] | HU Wende, WANG Yangdong, WANG Chuanming. Research progress on the direct catalytic conversion of syngas to light olefins [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4754-4766. |
[11] | ZHANG Peng, MENG Fanhui, YANG Guinan, LI Zhong. Progress of metal oxide in OX-ZEO catalyst for CO x hydrogenation to light olefins [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4159-4172. |
[12] | ZHOU Hongjun, ZHOU Ying, XU Chunming. Exploration of the CO2 conversion under China’s carbon neutrality goal [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3381-3385. |
[13] | HUA Yani, FENG Shaoguang, DANG Xinyue, HAO Wenbin, ZHANG Baowen, GAO Zhan. Research progress of CO2 electrocatalytic reduction to syngas [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1224-1240. |
[14] | SHAO Bin, SUN Zheyi, ZHANG Yun, PAN Fenghongkang, ZHAO Kaiqing, HU Jun, LIU Honglai. Recent progresses in CO2 to syngas and high value-added products [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1136-1151. |
[15] | CHU Genyun, FAN Yingjie, ZHANG Dawei, GAO Minglin, MEI Shumei, YANG Qingchun. Progress in key unit technologies and low-carbon integrated processes of coal to ethylene glycol process [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1654-1666. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |