Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 672-681.DOI: 10.16085/j.issn.1000-6613.2018-1158
• Resources and environmental engineering • Previous Articles Next Articles
Haiyang YAN1,2(),Yaoming WANG1,2(),Chenxiao JIANG1,Xiaolin WANG2,Chuanrun LI2,Liang WU1,Tongwen XU1()
Received:
2018-06-01
Revised:
2018-10-19
Online:
2019-01-05
Published:
2019-01-05
Contact:
Yaoming WANG,Tongwen XU
颜海洋1,2(),汪耀明1,2(),蒋晨啸1,王晓林2,李传润2,吴亮1,徐铜文1()
通讯作者:
汪耀明,徐铜文
作者简介:
颜海洋(1990—),男,博士研究生,从事离子膜过程的应用研究。E-mail:<email>oceanyan@mail.ustc.edu.cn</email>。|汪耀明,副研究员,从事膜相关过程的理论与应用研究。E-mail:<email>ymwong@ustc.edu.cn</email>|徐铜文,教授,博士生导师,从事膜材料及过程研究。E-mail:<email>twxu@ustc.edu.cn</email>
基金资助:
CLC Number:
Haiyang YAN, Yaoming WANG, Chenxiao JIANG, Xiaolin WANG, Chuanrun LI, Liang WU, Tongwen XU. Ion exchange membrane electrodialysis for high salinity wastewater “zero liquid discharge”: applications, opportunities and challenges[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 672-681.
颜海洋, 汪耀明, 蒋晨啸, 王晓林, 李传润, 吴亮, 徐铜文. 离子膜电渗析在高盐废水“零排放”中的应用、机遇与挑战[J]. 化工进展, 2019, 38(01): 672-681.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1158
项目名称 | 时间 | 处理效果及规模 |
---|---|---|
王子纸业废水“零排放” | 2014年 | 固含量从40g/L提高至120g/L,处理后废水100%回收利用,年回收废水1320万吨,年回收杂盐2.38万吨 |
华友湿法冶金废水“零排放” | 2014年 | 处理后废水100%回收利用,年回收废水50万吨;年回收萃取剂9900kg;年回收氯化铵约1.8万吨,作为化肥外售;减少COD排放100t;年回收钴49.5t |
宁夏能化高盐废水“零排放” | 2015年 | 浓水TDS≥200g/L,整体系统回收率≥93%,处理量450m3/h |
纳林河化工工业园区综合水处理 | 2016年 | 化工高盐废水资源化项目,采用进口离子膜,浓水TDS达到240g/L,水回用率达到99.5%,处理量200m3/h |
新疆德兰印染废水“零排放” | 2016年 | 浓水盐含量达到12%,27840m2离子膜,87台膜堆 |
电厂脱硫废水“零排放” | 2016年 | 淡水电导降至1mS/cm,处理量200m3/h,27台膜堆 |
神华煤化工废水“零排放” | 2017年 | 处理后废水100%回收利用,年回收废水330万吨;年回收杂盐约0.95万吨 |
山东淄博广通稀土废水“零排放” | 2017年 | 氯氧化锆废水,9680m2离子膜,40台膜堆 |
山东电镀废水“零排放” | 2017年 | 浓水盐含量达到15%,9600m2离子膜,40台膜堆 |
项目名称 | 时间 | 处理效果及规模 |
---|---|---|
王子纸业废水“零排放” | 2014年 | 固含量从40g/L提高至120g/L,处理后废水100%回收利用,年回收废水1320万吨,年回收杂盐2.38万吨 |
华友湿法冶金废水“零排放” | 2014年 | 处理后废水100%回收利用,年回收废水50万吨;年回收萃取剂9900kg;年回收氯化铵约1.8万吨,作为化肥外售;减少COD排放100t;年回收钴49.5t |
宁夏能化高盐废水“零排放” | 2015年 | 浓水TDS≥200g/L,整体系统回收率≥93%,处理量450m3/h |
纳林河化工工业园区综合水处理 | 2016年 | 化工高盐废水资源化项目,采用进口离子膜,浓水TDS达到240g/L,水回用率达到99.5%,处理量200m3/h |
新疆德兰印染废水“零排放” | 2016年 | 浓水盐含量达到12%,27840m2离子膜,87台膜堆 |
电厂脱硫废水“零排放” | 2016年 | 淡水电导降至1mS/cm,处理量200m3/h,27台膜堆 |
神华煤化工废水“零排放” | 2017年 | 处理后废水100%回收利用,年回收废水330万吨;年回收杂盐约0.95万吨 |
山东淄博广通稀土废水“零排放” | 2017年 | 氯氧化锆废水,9680m2离子膜,40台膜堆 |
山东电镀废水“零排放” | 2017年 | 浓水盐含量达到15%,9600m2离子膜,40台膜堆 |
1 | LEFEBVRE O , MOLETTA R .Treatment of organic pollution in industrial saline wastewater: a literature review[J].Water Research, 2006, 40(20): 3671-3682. |
2 | WANG Z , LUO G , LI J , et al . Response of performance and ammonia oxidizing bacteria community to high salinity stress in membrane bioreactor with elevated ammonia loading[J].Bioresource Technology, 2016, 216: 714-721. |
3 | 姜忠义, 李玉平, 陈志强, 等 . 煤化工废水近零排放与资源化关键技术研究与应用示范[J]. 化工进展, 2016, 35(12): 4099-4100. |
JIANG Zhongyi , LI Yuping , CHEN Zhiqiang , et al . Key technologies study and application demonstration of near-zero-liquid-discharge and resource recovery of coal chemical industry wastewater[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 4099-4100. | |
4 | TONG T , ELIMELECH M . The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions[J]. Environmental Science & Technology, 2016, 50(13): 6846-6855. |
5 | NAKOA K , RAHAOUI K , DATE A , et al . Sustainable zero liquid discharge desalination (SZLDD)[J]. Solar Energy, 2016, 135: 337-347. |
6 | SHI X , LEONG K Y , NG H Y . Anaerobic treatment of pharmaceutical wastewater: a critical review[J]. Bioresource Technology, 2017, 245: 1238-1244. |
7 | TSAI J H , MACEDONIO F , DRIOLI E , et al . Membrane-based zero liquid discharge: myth or reality?[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80: 192-202. |
8 | SUBRAMANI A , JACANGELO J G . Emerging desalination technologies for water treatment: a critical review[J]. Water Research, 2015, 75: 164-187. |
9 | GIWA A , DUFOUR V , AL MARZOOQI F , et al . Brine management methods: recent innovations and current status[J]. Desalination, 2017, 407: 1-23. |
10 | CHUNG T , ZHANG S , WANG K , et al . Forward osmosis processes: yesterday, today and tomorrow[J]. Desalination, 2012, 287: 78-81. |
11 | YAO K , QIN Y , YUAN Y , et al . Continuous-effect membrane distillation process based on hollow fiber AGMD module with internal latent-heat recovery[J]. AIChE Journal, 2013, 59(4): 1278-1297. |
12 | XU T , HUANG C . Electrodialysis-based separation technologies: a critical review[J]. AIChE Journal, 2008, 54(12): 3147-3159. |
13 | STRATHMANN H . Electrodialysis, a mature technology with a multitude of new applications[J]. Desalination, 2010, 264(3): 268-288. |
14 | RAN J , WU L , HE Y , et al . Ion exchange membranes: new developments and applications[J]. Journal of Membrane Science, 2017, 522: 267-291. |
15 | CAMPIONE A , GURRERI L , CIOFALO M , et al . Electrodialysis for water desalination: a critical assessment of recent developments on process fundamentals, models and applications[J]. Desalination, 2018, 434: 121-160. |
16 | ZHANG X , LI C , WANG X , et al . Recovery of hydrochloric acid from simulated chemosynthesis aluminum foils wastewater: an integration of diffusion dialysis and conventional electrodialysis[J]. Journal of Membrane Science, 2012, 409/410: 257-263. |
17 | YAN H , XUE S , WU C , et al . Separation of NaOH and NaAl(OH)4 in alumina alkaline solution through diffusion dialysis and electrodialysis[J]. Journal of Membrane Science, 2014, 469: 436-446. |
18 | KOTER S , CUCIUREANU A , KULTYS M , et al . Concentration of sodium hydroxide solutions by electrodialysis[J]. Separation Science and Technology, 2012, 47(9): 1405-1412. |
19 | JIANG C , WANG Y , ZHANG Z , et al . Electrodialysis of concentrated brine from RO plant to produce coarse salt and freshwater[J]. Journal of Membrane Science, 2014, 450: 323-330. |
20 | BITAW T N , PARK K , YANG D R . Optimization on a new hybrid forward osmosis-electrodialysis-reverse osmosis seawater desalination process[J]. Desalination, 2016, 398: 265-281. |
21 | CUI L , LI G , LI Y , et al . Electrolysis-electrodialysis process for removing chloride ion in wet flue gas desulfurization wastewater (DW): influencing factors and energy consumption analysis[J]. Chemical Engineering Research and Design, 2017, 123: 240-247. |
22 | YAO J , WEN D , SHEN J , et al . Zero discharge process for dyeing wastewater treatment[J]. Journal of Water Process Engineering, 2016, 11: 98-103. |
23 | MCGOVERN R K , ZUBAIR S M , LIENHARD V J H . The benefits of hybridising electrodialysis with reverse osmosis[J]. Journal of Membrane Science, 2014, 469: 326-335. |
24 | TANAKA Y . A computer simulation of batch ion exchange membrane electrodialysis for desalination of saline water[J]. Desalination, 2009, 249(3): 1039-1047. |
25 | TANAKA Y . A computer simulation of continuous ion exchange membrane electrodialysis for desalination of saline wate[J]. Desalination, 2009, 249(2): 809-821. |
26 | TANAKA Y . A computer simulation of feed and bleed ion exchange membrane electrodialysis for desalination of saline water[J]. Desalination, 2010, 254(1/2/3): 99-107. |
27 | ZHANG Y , GHYSELBRECHT K , MEESSCHAERT B , et al . Electrodialysis on RO concentrate to improve water recovery in wastewater reclamation[J]. Journal of Membrane Science, 2011, 378(1/2): 101-110. |
28 | ZHANG Y , GHYSELBRECHT K , VANHERPE R , et al . RO concentrate minimization by electrodialysis: techno-economic analysis and environmental concerns[J]. Journal of Environmental Management, 2012, 107: 28-36. |
29 | REIG M , CASAS S , ALADJEM C , et al . Concentration of NaCl from seawater reverse osmosis brines for the chlor-alkali industry by electrodialysis[J]. Desalination, 2014, 342: 107-117. |
30 | ZHANG W , MIAO M , PAN J , et al . Separation of divalent ions from seawater concentrate to enhance the purity of coarse salt by electrodialysis with monovalent-selective membranes[J]. Desalination, 2017, 411: 28-37. |
31 | ZHOU Y , YAN H , WANG X , et al . Electrodialytic concentrating lithium salt from primary resource[J]. Desalination, 2018, 425: 30-36. |
32 | ROTTIERS T , GHYSELBRECHT K , MEESSCHAERT B , et al . Influence of the type of anion membrane on solvent flux and back diffusion in electrodialysis of concentrated NaCl solutions[J]. Chemical Engineering Science, 2014, 113: 95-100. |
33 | 汪耀明, 颜海洋, 李为, 等 . 一种通过电渗析技术从煤化工废水中分离盐的方法: CN105906111A[P]. 2016-08-31. |
WANG Yaoming , YAN Haiyang , LI Wei , et al . Method for separating salt from coal-chemical-industry wastewater through electroosmosis technique: CN105606111A[P]. 2016-08-31. | |
34 | HUANG C , XU T . Electrodialysis with bipolar membranes for sustainable[J]. Environmental Science & Technology, 2006, 40: 5233-5243. |
35 | YE W , HUANG J , LIN J , et al . Environmental evaluation of bipolar membrane electrodialysis for NaOH production from wastewater: Conditioning NaOH as a CO2 absorbent[J]. Separation and Purification Technology, 2015, 144: 206-214. |
36 | GHYSELBRECHT K , SILVA A , VAN DER BRUGGEN B , et al . Desalination feasibility study of an industrial NaCl stream by bipolar membrane electrodialysis[J]. Journal of Environmental Management, 2014, 140: 69-75. |
37 | TRAN A T K , MONDAL P , LIN J , et al . Simultaneous regeneration of inorganic acid and base from a metal washing step wastewater by bipolar membrane electrodialysis after pretreatment by crystallization in a fluidized pellet reactor[J]. Journal of Membrane Science, 2015, 473: 118-127. |
38 | YANG Y , GAO X , FAN A , et al . An innovative beneficial reuse of seawater concentrate using bipolar membrane electrodialysis[J]. Journal of Membrane Science, 2014, 449: 119-126. |
39 | CHEN B , JIANG C , WANG Y , et al . Selectrodialysis with bipolar membrane for the reclamation of concentrated brine from RO plant [J]. Desalination, 2018, 442: 8-15. |
40 | LU H , LIN C , LEE S , et al . In situ measuring osmosis effect of Selemion CMV/ASV module during ED process of concentrated brine from DSW[J]. Desalination, 2011, 279(1/2/3): 278-284. |
41 | JIANG C , WANG Q , LI Y , et al . Water electro-transport with hydrated cations in electrodialysis[J]. Desalination, 2015, 365: 204-212. |
42 | MIKHAYLIN S , BAZINET L . Fouling on ion-exchange membranes: classification, characterization and strategies of prevention and control[J]. Advances in Colloid and Interface Science, 2016, 229: 34-56. |
43 | 任洪艳, 从威 . 电渗析中的膜污染及其控制方法研究进展[J]. 现代化工, 2007, 27(7): 18-22. |
REN Hongyan , CONG Wei . Recent advances in membranes fouling and its prevention in electrodialysis[J]. Modern Chemical Industry, 2007, 27(7): 18-22. | |
44 | YAN H , WU C , WU Y . Separation of alumina alkaline solution by electrodialysis: membrane stack configuration optimization and repeated batch experiments[J]. Separation and Purification Technology, 2015, 139: 78-87. |
45 | MULYATI S , TAKAGI R , FUJII A , et al . Improvement of the antifouling potential of an anion exchange membrane by surface modification with a polyelectrolyte for an electrodialysis process[J]. Journal of Membrane Science, 2012, 417/418: 137-143. |
46 | VASELBEHAGH M , KARKHANECHI H , MULYATI S , et al . Improved antifouling of anion-exchange membrane by polydopamine coating in electrodialysis process[J]. Desalination, 2014, 332(1): 126-133. |
47 | TANAKA Y, Concentration polarization in ion-exchange membrane electrodialysis—The events arising in a flowing solution in a desalting cell[J] Journal of Membrane Science, 2003, 216: 149-164. |
48 | TANAKA Y , REIG M , CASAS S , et al . Computer simulation of ion-exchange membrane electrodialysis for salt concentration and reduction of RO discharged brine for salt production and marine environment conservation[J] Desalination, 2015, 367: 76-89. |
49 | WALKER W , KIM Y , LAWLER D , Treatment of model inland brackish groundwater reverse osmosis concentrate with electrodialysis—Part Ⅰ : Sensitivity to superficial velocity[J] Desalination, 2014, 344: 152-162. |
[1] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[2] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[3] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[4] | FENG Jianghan, SONG Fang. Research progress of anion exchange membrane water electrolysis cells [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3501-3509. |
[5] | SUN Luqin, LU Huixia, WANG Jianyou. Separation of lysozyme from egg white by electrodialysis with ultrafiltration membrane(EDUF) process [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2262-2271. |
[6] | ZHANG Hongming, LU Jiongyuan, WANG Sanfan. Research progress on molecular structure of anion exchange membrane for fuel cells [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 318-330. |
[7] | WANG Jin, CHEN Qingbai, WANG Jianyou, LI Pengfei, DONG Lin. Research status and prospect of water softening technology based on pressure-driven and electro-driven membrane processes [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2649-2661. |
[8] | DONG Lin, CHEN Qingbai, WANG Jianyou, LI Pengfei, WANG Jin. Research progress in brackish water electrodialysis desalination technology [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2102-2114. |
[9] | WAN Lei, XU Zi’ang, WANG Peican, XU Qin, WANG Baoguo. Progress of alkaline-resistant ion membranes for hydrogen production by water electrolysis [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1556-1568. |
[10] | WANG Minjian, CHEN Siguo, SHAO Minhua, WEI Zidong. Recent advances of electrocatalysts in hydrogen fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4948-4961. |
[11] | Huichao SU, Tianming ZHANG, Yunqi WU, Guorong XU. Development of electrodialysis with ultrafiltration membrane technology [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 1-7. |
[12] | Lü LI, Shoutao GONG, Yanjiao MA, Kuibo ZHANG, Fengxiang ZHANG. Research progress on preparation of free volume and micropore enhanced anion exchange membranes and their application in energy devices [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2105-2114. |
[13] | Haitao ZHU,Bo YANG,Congjie GAO. Research progress on mass transfer models for electrodialysis process [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 815-823. |
[14] | Shiying ZHANG,Zhen LIU,Longfei LI. Application of cation exchange membrane loaded with ionic liquid in olefin/paraffin separation [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1090-1094. |
[15] | Shuangchen MA,Jianing CHEN,Zhongcheng WAN,Yajun XIANG,Jingrui ZHANG,Baozhong QU. Research status and development on solidification for high-salt desulfurization wastewater with cement [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4275-4283. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |