Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 664-671.DOI: 10.16085/j.issn.1000-6613.2018-1226
• Resources and environmental engineering • Previous Articles Next Articles
Shuoshi LIU(),Siyu YANG,Jingfang GU,Yu QIAN(
)
Received:
2018-06-12
Revised:
2018-07-31
Online:
2019-01-05
Published:
2019-01-05
Contact:
Yu QIAN
通讯作者:
钱宇
作者简介:
刘硕士(1994—),男,博士研究生,研究方向为过程系统工程。E-mail:<email>cemasterliu@mail.scut.edu.cn</email>。|钱宇,教授,博士生导师,研究方向为过程系统工程。E-mail:<email>ceyuqian@scut.edu.cn</email>。
基金资助:
CLC Number:
Shuoshi LIU, Siyu YANG, Jingfang GU, Yu QIAN. Review on coal and gas co-feed processes for better resource use and lower carbon emission[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 664-671.
刘硕士, 杨思宇, 顾竞芳, 钱宇. 气煤联供实现资源高效利用和碳减排技术进展[J]. 化工进展, 2019, 38(01): 664-671.
流程 | 技术规范 参数 | CTM[ | MPO[ | DMR/SMR[ |
---|---|---|---|---|
煤气化(Texaco) | 气化压力/MPa | 4.2 | 4.2 | 4.2 |
气化温度/℃ | 1300 | 1300 | 1300 | |
碳转化率/% | 98 | 98 | 98 | |
空分 | 高压/MPa | 0.6 | 0.6 | 0.6 |
低压/MPa | 0.13 | 0.13 | 0.13 | |
水煤气变换(Co-Mo) | 高温段入口 温度/℃ | 400 | ||
低温段入口 温度/℃ | 210 | |||
酸性气体脱除(Rectisol) | CO2吸收 温度/℃ | -33 | -33 | |
H2S吸收 温度/℃ | -23 | -23 | ||
变压吸附 | 氢气收率 | >90% | ||
甲烷部分氧化 | 反应压力/MPa | 3.0 | ||
反应温度/℃ | 1000 | |||
碳转化率/% | >88 | |||
甲烷干重整 | 反应压力/MPa | 0.1 | ||
反应温度/℃ | 800 | |||
碳转化率/% | 99.9 | |||
甲烷水蒸气重整 | 反应压力/MPa | 0.1 | ||
反应温度/℃ | 900 | |||
碳转化率/% | 99.9 | |||
甲醇合成 | 反应压力/MPa | 5.0 | 5.0 | 5.0 |
反应温度/℃ | 240 | 250 | 240 | |
循环比 | 4.5 | 4.0 | 4.5 |
流程 | 技术规范 参数 | CTM[ | MPO[ | DMR/SMR[ |
---|---|---|---|---|
煤气化(Texaco) | 气化压力/MPa | 4.2 | 4.2 | 4.2 |
气化温度/℃ | 1300 | 1300 | 1300 | |
碳转化率/% | 98 | 98 | 98 | |
空分 | 高压/MPa | 0.6 | 0.6 | 0.6 |
低压/MPa | 0.13 | 0.13 | 0.13 | |
水煤气变换(Co-Mo) | 高温段入口 温度/℃ | 400 | ||
低温段入口 温度/℃ | 210 | |||
酸性气体脱除(Rectisol) | CO2吸收 温度/℃ | -33 | -33 | |
H2S吸收 温度/℃ | -23 | -23 | ||
变压吸附 | 氢气收率 | >90% | ||
甲烷部分氧化 | 反应压力/MPa | 3.0 | ||
反应温度/℃ | 1000 | |||
碳转化率/% | >88 | |||
甲烷干重整 | 反应压力/MPa | 0.1 | ||
反应温度/℃ | 800 | |||
碳转化率/% | 99.9 | |||
甲烷水蒸气重整 | 反应压力/MPa | 0.1 | ||
反应温度/℃ | 900 | |||
碳转化率/% | 99.9 | |||
甲醇合成 | 反应压力/MPa | 5.0 | 5.0 | 5.0 |
反应温度/℃ | 240 | 250 | 240 | |
循环比 | 4.5 | 4.0 | 4.5 |
参数 | 流程 | ||
---|---|---|---|
CTM | MPO | DMR/SMR | |
规模/kt·a-1 | 1200 | 1200 | 1200 |
总投资/×109 CNY | 5.8 | 2.5 | 4.0 |
物料和能量消耗 | |||
煤/t·(t甲醇) -1 | 1.32 | 0.21 | 0.36 |
焦炉气/m3·(t甲醇) -1 | N/A | 1600 | 1217 |
氧气/m3·(t甲醇) -1 | 858 | 560 | 234 |
蒸汽/MJ·(t甲醇) -1 | 5403 | 0 | 5093 |
电力/KW·h·(t甲醇) -1 | 548 | 651 | 612 |
产品成本/CNY·t -1 | 1840 | 1732 | 1936 |
参数 | 流程 | ||
---|---|---|---|
CTM | MPO | DMR/SMR | |
规模/kt·a-1 | 1200 | 1200 | 1200 |
总投资/×109 CNY | 5.8 | 2.5 | 4.0 |
物料和能量消耗 | |||
煤/t·(t甲醇) -1 | 1.32 | 0.21 | 0.36 |
焦炉气/m3·(t甲醇) -1 | N/A | 1600 | 1217 |
氧气/m3·(t甲醇) -1 | 858 | 560 | 234 |
蒸汽/MJ·(t甲醇) -1 | 5403 | 0 | 5093 |
电力/KW·h·(t甲醇) -1 | 548 | 651 | 612 |
产品成本/CNY·t -1 | 1840 | 1732 | 1936 |
1 | 王明华, 李政, 倪维斗 . “双气头”多联产中试装置的流程设计研究[J]. 煤炭转化,2007,30(2): 48-52. |
WANG Minghua , LI Zheng , NI Weidou . Research on flowsheet design of medium scale double gas polygeneration device[J]. Coal Conversion,2007,30(2): 48-52. | |
2 | 王灵梅, 李政, 倪维斗, 等 . “双气头”多联产系统的能值评估[J]. 动力工程学报, 2010,30(10): 798-803. |
WANG Lingmei , LI Zheng , NI Weidou ,et al . Energy evaluation of double gas polygeneration systems[J]. Journal of Chinese Society of Power Engineering,2010,30(10): 798-803. | |
3 | 谢克昌, 张永发, 赵炜 . “双气头”多联产系统基础研究——焦炉煤气制备合成气[J]. 能源与节能, 2008(2): 10-12. |
XIE Kechang , ZHANG Yongfa , ZHAO Wei . Basic research on the "double head" polygeneration system—Preparation of syngas from coke oven gas[J]. Energy and Energy Conservation, 2008(2): 10-12. | |
4 | LIN H , JIN H G , GAO L , et al . A polygeneration system for methanol and power production based on coke oven gas and coal gas with CO2 recovery[J]. Energy, 2014, 74(2): 174-180. |
5 | YI Q , GONG M H , HUANG Y , et al . Process development of coke oven gas to methanol integrated with CO2, recycle for satisfactory techno-economic performance[J]. Energy, 2016, 112:618-628. |
6 | MAN Y , YANG S Y , QIAN Y , et al . Conceptual design of coke-oven gas assisted coal to olefins process for high energy efficiency and low CO2 emission[J]. Applied Energy, 2014, 133:197-205. |
7 | HUANG H , YANG S , CUI P . Design concept for coal-based polygeneration processes of chemicals and power with the lowest energy consumption for CO2 capture[J]. Energy Conversion & Management, 2018, 157:186-194. |
8 | GHODOOSI F , KHOSRAVI-NIKOU M R , SHARIATI A . Mathematical modeling of reverse water-gas shift reaction in a fixed‐bed reactor[J]. Chemical Engineering & Technology, 2017, 40(3): 598-607. |
9 | 刘霞 . 煤制甲醇过程的低温余热利用与碳减排工艺研究[D]. 广州: 华南理工大学, 2016. |
LIU Xia . The study on low temperature waste heat utilization and carbon reduction of coal-based methanol process[D]. Guangzhou: South China University of Technology, 2016 | |
10 | 彭丽娟 . 焦炉气辅助煤气化制甲醇系统概念设计[D]. 广州: 华南理工大学, 2014. |
PENG Lijuan . Conceptual design of coke-oven gas assisted coal gasification to methanol process[D]. Guangzhou: South China University of Technology, 2014. | |
11 | 葛志颖, 郭炜 . 焦炉气催化部分氧化制甲醇氢碳比优化与CO2减排[J]. 化工设计通讯, 2011, 37(2): 72-74. |
GE Zhiying , GUO Wei . Optimization of hydrogen-carbon ratio in methanol production from COG catalytic partial oxidation and CO2 emission reduction[J]. Chemical Engineering Design Communications, 2011, 37(2): 72-74. | |
12 | ZHAN M C , WANG W D , TIAN T F , et al . Catalytic partial oxidation of methane over perovskite La4Sr8Ti12O38- δ solid oxide fuel cell (SOFC) anode material in an oxygen-permeable membrane reactor[J]. Energy & Fuels, 2010(24): 764-771. |
13 | BERMÚDEZ J M , FERRERA-LORENZO N , LUQUE S , et al . New process for producing methanol from coke oven gas by means of CO2 reforming. Comparison with conventional process[J]. Fuel Processing Technology, 2013, 115(11): 215-221. |
14 | COURSON C , MAKAGA E , PETIT C , et al . Development of Ni catalysts for gas production from biomass gasification. Reactivity in steam-and dry -reforming[J]. Catalysis Today, 2000, 63(2): 427-437. |
15 | ABASHAR M E E . Coupling of steam and dry reforming of methane in catalytic fluidized bed membrane reactors[J]. International Journal of Hydrogen Energy, 2004, 29(8): 799-808. |
16 | BHAVSAR S , NAJERA M , VESER G . Chemical looping dry reforming as novel, intensified process for CO2 activation[J]. Chemical Engineering & Technology, 2012, 35(7): 1281-1290. |
17 | NAJERA M , GRACE H , BHAVSAR S , et al . CO2 activation via chemical Looping dry reforming[C]//23rd North American Catalysis Society Meeting, 2013. |
18 | ZENG Y , LIU S , MEI D , et al . Plasma-catalytic dry reforming of methane over Al2O3 supported metal catalysts[C]//IEEE International Conference on Plasma Sciences, 2015:80-87. |
19 |
CHEN L , GANGADHARAN P , LOU H H . Sustainability assessment of combined steam and dry reforming versus tri-reforming of methane for syngas production[J]. Asia-Pacific Journal of Chemical Engineering, 2018. DOI:13.10.1002/apj.2168.
DOI URL |
20 | YANG S , YANG Q , YI M , et al . Conceptual design and analysis of a natural gas assisted coal-to-olefins process for CO2 reuse[J]. Industrial & Engineering Chemistry Research, 2013, 52(40): 14406-14414. |
21 | LUYBEN W L . Design and control of the dry methane reforming process[J]. Industrial & Engineering Chemistry Research, 2014, 53(37): 14423-14439. |
22 | GANGADHARAN P , KANCHI K C , LOU H H . Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane[J]. Chemical Engineering Research & Design, 2012, 90(11): 1956-1968. |
23 | BARELLI L , BIDINI G , GALLORINI F , et al . Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review[J]. Energy, 2008, 33(4): 554-570. |
24 | XU J , FROMENT G F . Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics[J]. AIChE Journal, 1989, 35:88-96. |
25 | ROSTRUP-NIELSEN T . Process for the catalytic steam reforming of a hydrocarbon feedstock: AU200048635B2[P]. 2004-02-05. |
26 | MAN Y , YANG S Y , QIAN Y . Integrated process for synthetic natural gas production from coal and coke-oven gas with high energy efficiency and low emission[J]. Energy Conversion and Management, 2016, 117:162-170. |
27 | RUIZMERCADO G J , SMITH R L , GONZALEZ M A . Sustainability indicators for chemical processes:Ⅰ. Taxonomy[J]. Industrial & Engineering Chemistry Research, 2012, 51(5): 2309-2328. |
28 | ZHU Y , BIDDY M J , JONES S B , et al . Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading[J]. Applied Energy, 2014, 129(5): 384-394. |
29 | ORHAN M F , DINCER I , NATERER G F . Cost analysis of a thermochemical Cu-Cl pilot plant for nuclear-based hydrogen production[J]. International Journal of Hydrogen Energy, 2008, 33(21): 6006-6020. |
30 | LI Z , HU S , CHEN D , et al . Study on systems based on coal and natural gas for producing dimethyl ether[J]. Industrial & Engineering Chemistry Research, 2009, 48(8): 4101-4108. |
31 | YANG S , YANG Q , LI H , et al . An integrated framework for modeling, synthesis, analysis, and optimization of coal gasification-based energy and chemical processes[J]. Industrial & Engineering Chemistry Research, 2012, 51(48): 15763-15777. |
32 | XIANG D , YANG S Y , QIAN Y , et al . Techno-economic performance of the coal-to-olefins process with CCS[J]. Chemical Engineering Journal, 2014, 240(6): 45-54. |
33 | MANTRIPRAGADA H C , RUBIN E S . Techno-economic evaluation of coal-to-liquids (CTL) plants with carbon capture and sequestration[J]. Energy Policy, 2011, 39(5): 2808-2816. |
34 | 姜睿 . 碳交易与中国碳市场展望[J]. 中国经济报告, 2017(5): 52-56. |
JIANG Rui . Carbon trading and China's carbon market outlook [J]. China Policy Review, 2017(5): 52-56. | |
35 | 张亮 . 欧洲国家环境税制度对中国碳税政策的借鉴与启示[J]. 环境与发展, 2017, 29(4): 27-29. |
ZHANG Liang . European countries’ environmental tax system and its inspiration to China’s carbon tax policies[J]. Environment and Development, 2017, 29(4): 27-29. | |
36 | YUAN M , METCALF G E , REILLY J , et al . The revenue implications of a carbon tax[R/OL]. 2017. . |
[1] | LIU Yang, WU Xiuzhang, LIU Yongjian, WANG Bo. Global heat integration and optimization of coal to natural gas process [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3719-3727. |
[2] | YANG Qingchun, YANG Qing, ZHANG Jinliang, GAO Minglin, MEI Shumei, ZHANG Dawei. Development and system assessment of a coal-to-ethylene glycol process coupled with SOEC [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6061-6070. |
[3] | Yongjian LIU, Xiuzhang WU, Heming WANG, Junbing XIA, Bo WANG. Investigation and analysis of coal-based co-production process of synthetic natural gas and chemicals [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3111-3116. |
[4] | XIAO Honghua, LIU Yang, HUANG Hong, YANG Siyu. Modeling and heat integration for water gas shift unit of coal to SNG process [J]. Chemical Industry and Engineering Progress, 2018, 37(02): 554-560. |
[5] | MA Youfu, YANG Lijuan. Techno-economic comparison of the thermodynamic system at lignite-fired boiler's cold-end for recovering waste heat of exhaust gases [J]. Chemical Industry and Engineering Progree, 2016, 35(12): 4088-4095. |
[6] | HE Wenjun, FEI Taikang, WANG Jiahua, YANG Weimin. Economic investigation of direct catalytic hydration of ethylene oxide to ethylene glycol [J]. Chemical Industry and Engineering Progree, 2016, 35(07): 2268-2273. |
[7] | ZHOU Huairong, YANG Qingchun, YANG Siyu. Techno-economic analysis and comparison of oil shale-to-liquid fuels and coal-to-liquid fuels processes [J]. Chemical Industry and Engineering Progress, 2016, 35(05): 1404-1409. |
[8] | ZHOU Huairong, ZHANG Jun, YANG Siyu. Techno-economic analysis of oil shale retorting process [J]. Chemical Industry and Engineering Progree, 2015, 34(3): 684-688. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1026
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 349
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |