Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 382-393.DOI: 10.16085/j.issn.1000-6613.2018-1091
• Materials science and technology • Previous Articles Next Articles
Received:
2018-06-06
Revised:
2018-09-01
Online:
2019-01-05
Published:
2019-01-05
Contact:
Wanqin JIN
通讯作者:
金万勤
作者简介:
储震宇(1986—),男,博士,副教授,研究方向为纳米生物传感薄膜。E-mail:<email>zychu@njtech.edu.cn</email>。|金万勤,教授,博士生导师,研究方向为分离膜及生物传感薄膜。E-mail:<email>wqjin@njtech.edu.cn</email>。
基金资助:
CLC Number:
Zhenyu CHU, Wanqin JIN. Recent research progress on novel sensing film nanomaterials for detection of fermentation components[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 382-393.
储震宇, 金万勤. 新型纳米传感薄膜材料在发酵组分检测中的研究进展[J]. 化工进展, 2019, 38(01): 382-393.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1091
1 | 欧阳平凯 . 发酵工程关键技术及其应用[M]. 北京:化学工业出版社, 2005. |
OUYANG P K . Key technology and application of fermentation engineering[M]. Beijing: Chemical Industry Press,2005. | |
2 | PATRAŞCU I , LDEA C S B , KISS A A . Eco-efficient butanol separation in the ABE fermentation process[J]. Separation & Purification Technology,2017,177:49-61. |
3 | 李成群 . 中国生物发酵产品产量达2420万吨 居世界第一[EB/OL]. [2015-04-24]. . |
LI C Q . China's output of biological fermentation products reached 24.tons million ranking first in the world [EB/OL]. [2015-04-24]. . | |
4 | 刘二伟,朱文学,曹力,等 . 我国发酵工业存在的主要问题及解决措施[J]. 生物技术通讯,2015,26(3):446-448. |
LIU E W , ZHU W X , CAO L ,et al . The main problems and solutions in the fermentation industry in China[J]. Letters in Biotechnology,2015,26(3):446-448. | |
5 | KIM S H , HAN S K , SHIN H S . Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter[J]. Process Biochemistry,2006,41(1):199-207. |
6 | QURESHI N , SAHA B C , HECTOR R E ,et al . Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part —Batch fermentation[J]. Biomass and Bioenergy,2008,32(2):168-175. |
7 | MEARS L , STOCKS S M , SIN G ,et al . A review of control strategies for manipulating the feed rate in fed-batch fermentation processes[J]. Journal of Biotechnology,2017,245:34-46. |
8 | BELLON-MAUREL V , ORLIAC O , CHRISTEN P . Sensors and measurements in solid state fermentation: a review[J]. Process Biochemistry,2003,38(6):881-896. |
9 | KROMMENHOEK E E , VAN LEEUWEN M , GARDENIERS H ,et al . Lab-scale fermentation tests of microchip with integrated electrochemical sensors for pH, temperature, dissolved oxygen and viable biomass concentration[J]. Biotechnology & Bioengineering,2008,99(4):884-892. |
10 | ALEXANDROPOULOU M , ANTONOPOULOU G , LYBERATOS G . A novel approach of modeling continuous dark hydrogen fermentation[J]. Bioresource Technology,2017,250:784. |
11 | WANG J . Glucose biosensors: 40 years of advances and challenges[J]. Electroanalysis,2010,13(12): 983-988. |
12 | GOODE J A , RUSHWORTH J V H , MILLNER P A . Biosensor regeneration: a review of common techniques and outcomes[J]. Langmuir the ACS Journal of Surfaces & Colloids,2015,31(23):6267-6276. |
13 | BROOKS K E , RAWAL N , HENDERSON A R . Laboratory assessment of three new monitors of blood glucose, AccuChekⅡ Glucometer Ⅱ and Glucosan 2000[J]. Clinical Chemistry,1987,32(12):2195-2200. |
14 | 张先恩 . 生物传感器[M]. 北京:化学工业出版社, 2006. |
ZHANG X E . Biosensor[M]. Beijing: Chemical Industry Press,2006. | |
15 | WANG J . Electrochemical glucose biosensors[J]. Chemical Reviews,2008,108:814-825. |
16 | CHU Z Y , LIU Y , JIN W Q . Recent progress in Prussian blue films: methods used to control regular nanostructures for electrochemical biosensing applications[J]. Biosensors & Bioelectronics,2017,96:17-25. |
17 | LIU L F , SHI L , CHU Z Y ,et al . Prussian blue nanocubes modified graphite electrodes for the electrochemical detection of various analytes with high performance[J]. Sensors and Actuators B: Chemical,2014,202:820-826. |
18 | XU J J , ZHAO W , LUO X L ,et al . A sensitive biosensor for lactate based on layer-by-layer assembling MnO2 nanoparticles and lactate oxidase on ion-sensitive field-effect transistors[J]. Chemical Communications,2005,6(6):792-794. |
19 | OZEL R E , ISPAS C , GANESANA M ,et al . Glutamate oxidase biosensor based on mixed ceria and titania nanoparticles for the detection of glutamate in hypoxic environments[J]. Biosensors & Bioelectronics,2014,52:397-402. |
20 | ZHANG L , XU Z , SUN X ,et al . A novel alcohol dehydrogenase biosensor based on solid-state electrogenerated chemiluminescence by assembling dehydrogenase to Ru(bpy)3 2+ Au nanoparticles aggregates[J]. Biosensors & Bioelectronics,2007,22(6):1097-1100. - |
21 | TSAI Y C , HUANG J D , CHIU C C . Amperometric ethanol biosensor based on poly(vinyl alcohol)-multiwalled carbon nanotube-alcohol dehydrogenase biocomposite[J]. Biosensors & Bioelectronics,2007,22(12):3051-3056. |
22 | KUMAR G S , WEE Y , LEE I ,et al . Stabilized glycerol dehydrogenase for the conversion of glycerol to dihydroxyacetone[J]. Chemical Engineering Journal,2015,276:283-288. |
23 | ZHANG H , XU Z , SHEN J ,et al . Effects and mechanism of atmospheric-pressure dielectric barrier discharge cold plasma on lactate dehydrogenase (LDH) enzyme[J]. Scientific Reports,2015,5:10031. |
24 | VARGAS E , CONZUELO F , RUIZ M ,et al . Automated bioanalyzer based on amperometric enzymatic biosensors for the determination of ethanol in low-alcohol beers[J]. Beverages,2017,3(4):22. |
25 | WANG L , TAO T , SU W ,et al . A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice[J]. Lab on A Chip,2017,17(10):1749-1760. |
26 | CHU Z Y , LI L L , LIU G P ,et al . A novel membrane with heterogeneously functionalized nanocrystal layers performing blood separation and sensing synchronously[J]. Chemical Communications,2016,52(86): 12706-12709. |
27 | LIANG B , GUO X , FANG L ,et al . Study of direct electron transfer and enzyme activity of glucose oxidase on graphene surface[J]. Electrochemistry Communications,2015,50:1-5. |
28 | CHU Z Y , PENG J M , JIN W Q . Advanced nanomaterial inks for screen-printed chemical sensors[J]. Sensors and Actuators B: Chemical,2017,243:919-926. |
29 | GUERRIERI A , LATTANZIO V , PALMISANO F ,et al . Electrosynthesized poly(pyrrole)/poly(2-naphthol) bilayer membrane as an effective anti-interference layer for simultaneous determination of acethylcholine and choline by a dual electrode amperometric biosensor[J]. Biosensors & Bioelectronics,2006,21(9):1710-1718. |
30 | EGGINS B R . Chemical sensors and biosensors[M]. New York: John Wiley & Sons,2008. |
31 | COOPER J , CASS T . Biosensors[M]. New York: Oxford University Press,2004. |
32 | TRIPATHI V S , KANDIMALLA V B , JU H . Amperometric biosensor for hydrogen peroxide based on ferrocene-bovine serum albumin and multiwall carbon nanotube modified ormosil composite[J]. Biosensors and Bioelectronics,2006,21(8):1529-1535. |
33 | LIU Y , CHU Z Y , JIN W Q . A sensitivity-controlled hydrogen peroxide sensor based on self-assembled Prussian blue modified electrode[J]. Electrochemistry Communications,2009,11(2):484-487. |
34 | JIA J , WANG B , WU A ,et al . A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network[J]. Analytical Chemistry,2002,74(9):2217-2223. -based |
35 | SOLANKI P R , KAUSHIK A , AGRAWAL V V ,et al . Nanostructured metal oxide biosensors[J]. NPG Asia Materials,2011,3(1):17. |
36 | HUYNH T P , SHARMA P S , SOSNOWSKA M ,et al . Functionalized polythiophenes: recognition materials for chemosensors and biosensors of superior sensitivity, selectivity, and detectability[J]. Progress in Polymer Science,2015,47:1-25. |
37 | CHAN D , BARSAN M M , KORPAN Y ,et al . L-lactate selective impedimetric bienzymatic biosensor based on lactate dehydrogenase and pyruvate oxidase[J]. Electrochimica Acta,2017,231:209-215. |
38 | ARYA S K , SAHA S , RAMIREZ-VICK J E ,et al . Recent advances in ZnO nanostructures and thin films for biosensor applications[J]. Analytica Chimica Acta,2012,737:1-21. |
39 | CHEN S , YUAN R , CHAI Y ,et al . Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review[J]. Microchimica Acta,2013,180(1/2):15-32. |
40 | UPDIKE S , HICKS G . Reagentless substrate analysis with immobilized enzymes[J]. Science,1967,158(3798):270-272. |
41 | JENA B K , RAJ C R . Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles[J]. Analytical Chemistry,2006,78(18):6332-6339. |
42 | TIĞ G A . Highly sensitive amperometric biosensor for determination of NADH and ethanol based on Au-Ag nanoparticles/poly(L-cysteine)/reduced graphene oxide nanocomposite[J]. Talanta,2017,175:382-389. |
43 | LAMAS-ARDISANA P J , LOAIZA O A , ORGA L A ,et al . Disposable amperometric biosensor based on lactate oxidase immobilised on platinum nanoparticle-decorated carbon nanofiber and poly(diallyldimethylammonium chloride) films[J]. Biosensors & Bioelectronics,2014,56:345-351. |
44 | CHU Z Y , SHI L , LIU L F ,et al . Highly enhanced performance of glucose biosensor via in situ growth of oriented Au micro-cypress[J]. Journal of Materials Chemistry,2012,22(41):21917-21922. |
45 | SAMPHAO A , BUTMEE P , SAEJUENG P ,et al . Monitoring of glucose and ethanol during wine fermentation by bienzymatic biosensor[J]. Journal of Electroanalytical Chemistry,2018,816:179-188. |
46 | RAHMAN M M , AHAMMAD A , JIN J H ,et al . A comprehensive review of glucose biosensors based on nanostructured metal-oxides[J]. Sensors,2010,10(5):4855-4886. |
47 | XIAO F , LI Y , ZAN X ,et al . Growth of metal-metal oxide nanostructures on freestanding graphene paper for flexible biosensors[J]. Advanced Functional Materials,2012,22(12):2487-2494. |
48 | BIROL G , ÜNDEY C , CINAR A . A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers & Chemical Engineering,2002,26(11):1553-1565. |
49 | IBUPOTO Z H , ALI S M , KHUN K ,et al . ZnO nanorods based enzymatic biosensor for selective determination of penicillin[J]. Biosensors,2011,1(4):153-163. |
50 | AMPELLI C , LEONARDI S G , GENOVESE C ,et al . Monitoring of glucose in fermentation processes by using Au/TiO2 composites as novel modified electrodes[J]. Journal of Applied Electrochemistry,2015,45(9):943-951. |
51 | RICCI F , PALLESCHI G . Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes[J]. Biosensors and Bioelectronics,2005,21(3):389-407. |
52 | WU X Q ,MA J G, LI H ,et al . Metal-organic framework biosensor with high stability and selectivity in a bio-mimic environment[J]. Chemical Communications,2015,51(44):9161-9164. |
53 | ITAYA K , UCHIDA I , NEFF V D . Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues[J]. Accounts of Chemical Research,1986,19(6):162-168. |
54 | KARYAKIN A A , KARYAKINA E E , GORTON L . Amperometric biosensor for glutamate using Prussian blue-based “artificial peroxidase” as a transducer for hydrogen peroxide[J]. Analytical Chemistry,2000,72(7):1720-1723. |
55 | VAUCHER S , LI M , MANN S . Synthesis of Prussian blue nanoparticles and nanocrystal superlattices in reverse microemulsions[J]. Angewandte Chemie International Edition,2000,39(10):1793-1796. |
56 | JOHANSSON A , WIDENKVIST E , LU J ,et al . Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template[J]. Nano letters,2005,5(8):1603-1606. |
57 | CHU Z Y , LIU Y , JIN W Q ,et al . Facile fabrication of a Prussian blue film by direct aerosol deposition on a Pt electrode[J]. Chemical Communications,2009,24(24):3566-3567. |
58 | CHU Z Y , ZHANG Y N , DONG X L ,et al . Template-free growth of regular nano-structured Prussian blue on a platinum surface and its application in biosensors with high sensitivity[J]. Journal of Materials Chemistry,2010,20(36):7815-7820. |
59 | CHU Z Y , SHI L , LIU L F ,et al . Highly enhanced performance of glucose biosensor via in situ growth of oriented Au micro-cypress[J]. Journal of Materials Chemistry,2012,22(41):21917. |
60 | CHU Z Y , SHI L , ZHANG Y N ,et al . Single layer Prussian blue grid as a versatile enzyme trap for low-potential biosensors[J]. Journal of Materials Chemistry,2012,22(30):14874. |
61 | CHU Z Y , ZHANG Y N , DONG X L ,et al . Template-free growth of regular nano-structured Prussian blue on a platinum surface and its application in biosensors with high sensitivity[J]. Journal of Materials Chemistry,2010,20(36):7815. |
62 | FU Y , LI P , BU L ,et al . Exploiting metal-organic coordination polymers as highly efficient immobilization matrixes of enzymes for sensitive electrochemical biosensing[J]. Analytical Chemistry,2011,83(17):6511-6517. |
63 | SHRIVASTAVA S , JADON N , JAIN R . Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: a review[J]. TrAC Trends in Analytical Chemistry,2016,82:55-67. |
64 | APETREI C , RODR GUEZ-M NDEZ M , DE SAJA J . Amperometric tyrosinase based biosensor using an electropolymerized phosphate-doped polypyrrole film as an immobilization support. Application for detection of phenolic compounds[J]. Electrochimica Acta,2011,56(24):8919-8925. |
65 | GERARD M , CHAUBEY A , MALHOTRA B . Application of conducting polymers to biosensors[J]. Biosensors & Bioelectronics,2002,17(5):345-359. |
66 | PALMISANO F , RIZZI R , CENTONZE D ,et al . Simultaneous monitoring of glucose and lactate by an interference and cross-talk free dual electrode amperometric biosensor based on electropolymerized thin films[J]. Biosensors and Bioelectronics,2000,15(9/10): 531-539. |
67 | GIMÉNEZ GÓMEZ P , GUTIÉRREZ CAPITÁN M , CAPDEVILA F ,et al . Monitoring of malolactic fermentation in wine using an electrochemical bienzymatic biosensor for L-lactate with long term stability[J]. Analytica Chimica Acta,2016,905:126-133. |
68 | SHAO Y , WANG J , WU H ,et al . Graphene based electrochemical sensors and biosensors: a review[J]. Electroanalysis,2010,22(10):1027-1036. |
69 | WANG J . Carbon-nanotube based electrochemical biosensors: a review[J]. Electroanalysis,2005,17(1):7-14. |
70 | AHMAD M , PAN C , GAN L ,et al . Highly sensitive amperometric cholesterol biosensor based on Pt-incorporated fullerene-like ZnO nanospheres[J]. The Journal of Physical Chemistry C,2009,114(1):243-250. |
71 | SEFCOVICOVA J , FILIP J , MASTIHUBA V ,et al . Analysis of ethanol in fermentation samples by a robust nanocomposite-based microbial biosensor[J]. Biotechnology Letters,2012,34(6):1033-1039. |
72 | RAFIGHI P , TAVAHODI M , HAGHIGHI B . Fabrication of a third-generation glucose biosensor using graphene-polyethyleneimine-gold nanoparticles hybrid[J]. Sensors and Actuators B: Chemical,2016,232:454-461. |
73 | CHU Z Y , LIU Y , XU Y Q ,et al . In-situ fabrication of well-distributed gold nanocubes on thiol graphene as a third-generation biosensor for ultrasensitive glucose detection[J]. Electrochimica Acta,2015,176:162-171. |
74 | CHU Z Y , SHI L , JIN W Q . 3D graphene nano-grid as a homogeneous protein distributor for ultrasensitive biosensors[J]. Biosensors & Bioelectronics,2014,61(21):422-428. |
75 | SHI L , CHU Z Y , LIU Y ,et al . In situ fabrication of three‐dimensional graphene films on gold substrates with controllable pore structures for high performance electrochemical sensing[J]. Advanced Functional Materials,2015,24(44):7032-7041. |
76 | KUMAR S , AHLAWAT W , KUMAR R ,et al . Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare[J]. Biosensors & Bioelectronics,2015,70(1):498-503. |
77 | SONG Y , LUO Y , ZHU C ,et al . Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials[J]. Biosensors and Bioelectronics,2016,76:195-212. |
[1] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[2] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[3] | WANG Xueting, GU Xia, XU Xianbao, ZHAO Lei, XUE Gang, LI Xiang. Effectiveness of hydrothermal pretreatment on valeric acid production during food waste fermentation [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4994-5002. |
[4] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[5] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[6] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[7] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[8] | QIN Kai, YANG Shilin, LI Jun, CHU Zhenyu, BO Cuimei. A Kalman filter algorithm-based high precision detection method for glucoamylase biosensors [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3177-3186. |
[9] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[10] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[11] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[12] | HUANG Yue, ZHAO Lixin, YAO Zonglu, YU Jiadong, LI Zaixing, SHEN Ruixia, AN Kemeng, HUANG Yali. Research progress in directed bioconversion of lactic acid and acetic acid from wood lignocellulosic wastes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2691-2701. |
[13] | YIN Ming, GUO Jin, PANG Jifeng, WU Pengfei, ZHENG Mingyuan. Deactivation mechanisms and stabilizing strategies for Cu based catalysts in reactions with hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1860-1868. |
[14] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[15] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |