[1] HOFFERT M I, CALDEIRA K, BENFORD G, et al. Advanced technology paths to global climate stability:energy for a greenhouse planet[J]. Science, 2002, 298:981-7.
[2] LOGAN B E, ELIMELECH M. Membrane-based processes for sustainable power generation using water[J]. Nature, 2012, 488:313-319.
[3] PATTLE R E. Production of electric power by mixing fresh and salt water in the hydroelectric pile[J]. Nature, 1954, 174:660-.
[4] YIP N Y, ELIMELECH M. Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis[J]. Environmental Science & Technology, 2012, 46:5230.
[5] THORSEN T, HOLT T. The potential for power production from salinity gradients by pressure retarded osmosis[J]. Journal of Membrane Science, 2009, 335:103-110.
[6] YIP N Y, TIRAFERRI A, PHILLIP W A, et al. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients[J]. Environmental Science & Technology, 2011, 45:4360.
[7] MOOMAW W, BURGHERR P, HEATH G, et al. IPCC special report on renewable energy sources and climate change mitigation[J]. Minerva Cardioangiologica, 2012, 9:758-761.
[8] HELFER F, LEMCKERT C, ANISSIMOV Y G. Osmotic power with pressure retarded osmosis:theory, performance and trends-A review[J]. Journal of Membrane Science, 2014, 453:337-358.
[9] YIP N Y, VERMAAS D A, NIJMEIJER K, et al. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients[J]. Environmental Science & Technology, 2014, 48:4925.
[10] RICA R A, ZIANO R, SALERNO D, et al. Capacitive mixing for harvesting the free energy of solutions at different concentrations[J]. Entropy, 2013, 15:1388-1407.
[11] ACHILLI A, CHILDRESS A E. Pressure retarded osmosis:from the vision of sidney loeb to the first prototype installation -review[J]. Desalination, 2010, 261:205-211.
[12] FIMBRES-WEIHS G A, WILEY D E. Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules[J]. Chemical Engineering & Processing Process Intensification, 2010, 49:759-781.
[13] COSTA A R D, FANE A G, WILEY D E. Spacer characterization and pressure drop modelling in spacer-filled channels for ultrafiltration[J]. Journal of Membrane Science, 1994, 87:79-98.
[14] SCHOCK G, MIQUEL A. Mass transfer and pressure loss in spiral wound modules[J]. Desalination, 1987, 64:339-352.
[15] WAN C F, LI B, YANG T, et al. Design and fabrication of inner-selective thin-film composite(TFC) hollow fiber modules for pressure retarded osmosis(PRO)[J]. Separation & Purification Technology, 2017, 172:32-42.
[16] SAGIV A, XU W, CHRISTOFIDES P D, et al. Evaluation of osmotic energy extraction via FEM modeling and exploration of PRO operational parameter space[J]. Desalination, 2016, 401:120-133.
[17] STRAUB A P, LIN S, ELIMELECH M. Module-scale analysis of pressure retarded osmosis:performance limitations and implications for full-scale operation[J]. Environmental Science & Technology, 2014, 48:12435-12444.
[18] LI X, CAI T, AMY G L, et al. Cleaning strategies and membrane flux recovery on anti-fouling membranes for pressure retarded osmosis[J]. Journal of Membrane Science, 2017, 522:116-123.
[19] KOUTSOU C P, YIANTSIOS S G, KARABELAS A J. A numerical and experimental study of mass transfer in spacer-filled channels:effects of spacer geometrical characteristics and Schmidt number[J]. Journal of Membrane Science, 2009, 326:234-251.
[20] BALSTER J, P NT I, STAMATIALIS D F, et al. Multi-layer spacer geometries with improved mass transport[J]. Journal of Membrane Science, 2006, 282:351-361.
[21] KIM Y C, ELIMELECH M. Adverse impact of feed channel spacers on the performance of pressure retarded osmosis[J]. Environmental Science & Technology, 2012, 46:4673-4681.
[22] SHE Q, HOU D, LIU J, et al. Effect of feed spacer induced membrane deformation on the performance of pressure retarded osmosis (PRO):Implications for PRO process operation[J]. Journal of Membrane Science, 2013, 445:170-182.
[23] INCROPERA F P. Fundamentals of heat and mass transfer[M]. New York:Wiley, 1985.
[24] LI Y, WANG R, QI S, et al. Structural stability and mass transfer properties of pressure retarded osmosis(PRO) membrane under high operating pressures[J]. Journal of Membrane Science, 2015, 488:143-153.
[25] KIM J, PARK M, SNYDER S A, et al. Reverse osmosis(RO) and pressure retarded osmosis(PRO) hybrid processes:model-based scenario study[J]. Desalination, 2013, 322:121-130. |