[1] 方梦祥, 厉文榜, 岑建孟, 等. 煤催化气化技术的研究现状与展望[J]. 化工进展, 2015, 34(10):3656-3664. FANG M X, LI W B, CEN J M, et al. Progress and prospect of research on catalytic gasification of coal[J]. Chemical Industry and Engineering Progress, 2015, 34(10):3656-3664.
[2] GUO Z, WANG Q, FANG M, et al. Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant[J]. Applied Energy, 2014, 113(4):1301-1314.
[3] YU J, YIN F, WANG S, et al. Sulfur removal property of activated-char-supported Fe-Mo sorbents for integrated cleaning of hot coal gases[J]. Fuel, 2013, 108:91-98.
[4] CHOMIAK M, TRAWCZYNSKI J. Effect of Titania on the properties of Zn-Fe-O sorbents of hydrogen sulfide[J]. Fuel Processing Technology, 2015, 134:92-97.
[5] 张四方, 陈虎, 任瑞鹏, 等. 高温煤气金属脱硫剂的研究进展[J]. 化工进展, 2014, 33(6):1373-1379. ZHANG S F, CHEN H, REN R P, et al. Research progress of metal sorbents for hot coal gas desulfurization[J]. Chemical Industry and Engineering Progress, 2014, 33(6):1373-1379.
[6] YU J, CHANG L, XIE W, et al. Correlation of H2S and COS in the hot coal gas stream and its importance for high temperature desulfurization[J]. Korean Journal of Chemical Engineering, 2011, 28(4):1054-1057.
[7] MI J, FENG G, HAN L, et al. Modified semi-coke-supported cerium oxide-doped zinc ferrites for the removal of H2S from coal gas[J]. Chemical Engineering & Technology, 2012, 35(9):1626-1631.
[8] 曹蕾, 周松锐. 整体煤气化联合循环粗煤气净化系统及设备[J]. 现代化工, 2011, 31(4):71-74. CAO L, ZHOU S R. Purification system and equipments for IGCC syngas[J]. Modern Chemical Industry, 2011, 31(4):71-74.
[9] CHEN W, XU R. Clean coal technology development in China[J]. Energy Policy, 2010, 38(5):2123-2130.
[10] 刘雪波, 王睿, 米杰. 铁酸锌脱硫剂脱硫性能的研究进展[J]. 山西化工, 2009, 29(1):12-15. LIU X B, WANG R, MI J. Study progress on desulfuration property of ZnFe2O4 desulfurizer[J]. Shanxi Chemical Industry, 2009, 29(1):12-15.
[11] TOMAS-ALONSO F, LATASA J M P. Synthesis and surface properties of zinc ferrite species in supported sorbents for coal gas desulphurisation[J]. Fuel Processing Technology, 2004, 86(2):191-203.
[12] ZHANG R, HUANG J, ZHAO J, et al. Sol-gel auto-combustion synthesis of zinc ferrite for moderate temperature desulfurization[J]. Energy & Fuels, 2007, 21(5):2682-2687.
[13] 于芳芳, 张志娟, 伍健东. 高温煤气脱硫剂铁酸锌的性能及再生研究[J]. 化学与生物工程, 2008, 25(2):62-65. YU F F, ZHANG Z J, WU J D. Study on performance and regeneration of desulfurization sorbent zinc ferrite for hot coal gas[J]. Chemistry & Bioengineering, 2008, 25(2):62-65.
[14] 冯庆吉, 王广建, 吴栋,等. 高温焦炉气脱硫剂铁酸锌的制备及改性[J]. 化工科技, 2015, 23(5):16-20. FENG Q J, WANG G J, WU D, et al. Preparation and modification of zinc ferrite desulfurizer for high temperature coke 0Ven gas[J]. Science & Technology in Chemical Industry, 2015, 23(5):16-20.
[15] 牟群英, 李贤军. 微波加热技术的应用与研究进展[J]. 物理, 2004, 33(6):438-442. MOU Q Y, LI X J. Applications of microwave heating technology[J]. Physics, 2004, 33(6):438-442.
[16] 周晓东. 微波加热在固相反应及烧结中的应用[J]. 昆明冶金高等专科学校学报, 2006, 22(1):55-58. ZHOU X D. The application of microwave heating to the solid-state reaction and agglomeration[J]. Journal of Kunming Metallurgy College, 2006, 22(1):55-58.
[17] 章烨, 张振锋, 孟庆华, 等. 微波作用下的固相有机反应的初步研究[J]. 辽宁石油化工大学学报, 2006, 26(4):89-90. ZHANG Y, ZHANG Z F, MENG Q H, et al. Some organic reactions in dry media under microwave activation[J]. Journal of Liaoning University of Petroleum & Chemical Technology, 2006, 26(4):89-90.
[18] 李秀艳, 李大光, 傅维勤,等. 微波技术在固相化学反应中的应用[J]. 化工装备技术, 2002, 23(5):60-62. LI X Y, LI D G, FU W Q, et al. Studies on application of microwave heating technology in the solid state reactions[J]. Chemical Equipment Technology, 2002, 23(5):60-62.
[19] 卢朝阳, 沙兴中, 鲁军, 等. 高温煤气脱硫Ⅰ.铁锌基脱硫剂脱硫工艺条件及硫化动力学[J]. 燃料化学学报, 1996, 24(6):492-497. LU Z Y, SHA X Z, LU J, et al. Coal gas desulfurization at high temperature I. Sulfidation and kinetics of Fe/Zn based sorbents[J]. Journal of Fuel Chemistry and Technology, 1996, 24(6):492-497.
[20] WOODS M C, GANGWAL S K, HARRISON D P, et al. Kinetics of the reactions of a zinc ferrite sorbent in high-temperature coal gas desulfurization[J]. Industrial & Engineering Chemistry Research, 1991, 30(1):100-107.
[21] AMIRI A, INGRAM G D, MAYNARD N E, et al. An unreacted shrinking core model for calcination and similar solid-to-gas reactions[J]. Chemical Engineering Communications, 2015, 202(9):1161-1175.
[22] LI Y, GUO H, LI C, et al. A study on the apparent kinetics of H2S removal using a ZnO-MnO desulfurizer[J]. Industrial & Engineering Chemistry Research, 1997, 36(9):3982-3987.
[23] 王德海, 常丽萍, 谢巍,等. 高温煤气脱硫的动力学研究现状及进展[J]. 煤化工, 2009, 37(4):20-25. WANG D H, CAHNG L P, XIE W, et al. Review on the kinetics of high temperature desulphurization of coal gases[J]. Coal Chemical Industry, 2009, 37(4):20-25.
[24] FAN H, LI Y, LI C, et al. The apparent kinetics of H2S removal by zinc oxide in the presence of hydrogen[J]. Fuel, 2002, 81(1):91-96.
[25] MA Z, ZHENG X, CHANG L, et al. Desulfurization kinetics of ZnO sorbent loaded on semi-coke support for hot coal gas[J]. Journal of Energy Chemistry, 2012, 21(5):556-562.
[26] 张瑞妮, 张帅国, 武蒙蒙,等. 微波法制备纳米铁酸锌及其晶粒生长动力学[J]. 化工进展, 2015, 34(12):4290-4294. ZHANG R N, ZHANG S G, WU M M, et al. Microwave sintering of nano-grained zinc ferrite and its grain growth kinetics[J]. Chemical Industry and Engineering Progress, 2015, 34(12):4290-4294.
[27] LI F, YAN B, ZHANG J, et al. Study on desulfurization efficiency and products of Ce-doped nanosized ZnO desulfurizer at ambient temperature[J]. Journal of Rare Earths, 2007, 25(3):306-310.
[28] YIN H, YAMAMOTO T, WADA Y, et al. Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation[J]. Materials Chemistry & Physics, 2004, 83(1):66-70.
[29] LIU B S, WAN Z Y, ZHAN Y P, et al. Desulfurization of hot coal gas over high-surface-area LaMeOx/MCM-41 sorbents[J]. Fuel, 2012, 98(6):95-102.
[30] EFTHIMIADIS E A, SOTIRCHOS S V. Effects of pore structure on the performance of coal gas desulfurization sorbents[J]. Chemical Engineering Science, 1993, 48(11):1971-1984.
[31] FENG Y, HU T, WU M, et al. Effect of microwave irradiation on the preparation of iron oxide/arenaceous clay sorbent for hot coal gas desulfurization[J]. Fuel Processing Technology, 2016, 148:35-42.
[32] WEI Z, ZENG G, XIE Z. Microwave catalytic desulfurization and denitrification simultaneously on Fe/Ca-5A zeolite catalyst[J]. Energy & Fuels, 2009, 23(6):2947-2951.
[33] FAN G, GU Z, YANG L, et al. Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique[J]. Chemical Engineering Journal, 2009, 155(1-2):534-541.
[34] YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8):2441-2449.
[35] BARDHAN A, GHOSH C K, MITRA M K, et al. Low temperature synthesis of zinc ferrite nanoparticles[J]. Solid State Sciences, 2010, 12(5):839-844.
[36] GROSVENOR A P, KOBE B A, BIESINGER M C, et al. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds[J]. Surface & Interface Analysis, 2004, 36(12):1564-1574.
[37] ZHANG Y, LIU B S, ZHANG F M, et al. Formation of (FexMn2-x)O3, solid solution and high sulfur capacity properties of Mn-based/M41 sorbents for hot coal gas desulfurization[J]. Journal of Hazardous Materials, 2013, s 248-249(6):81-88.
[38] XU Q H, XU D M, GUAN M Y, et al. ZnO/Al2O3/CeO2 composite with enhanced gas sensing performance[J]. Sensors & Actuators B Chemical, 2013, 177(2):1134-1141.
[39] FOLEY M, TON-THAT C, PHILLIPS M R. Cathodoluminescence inhomogeneity in ZnO nanorods[J]. Applied Physics Letters, 2008, 93(24):1897. |