Chemical Industry and Engineering Progress ›› 2017, Vol. 36 ›› Issue (S1): 51-57.DOI: 10.16085/j.issn.1000-6613.2017-0274

Previous Articles     Next Articles

Modularized microchannel parallelization design and fabrication for mass production of functional materials

HAN Tengteng, ZHANG Li, XUAN Jin, DONG Zheng, XU Hong   

  1. State-Key Laboratory of Chemical Engineering, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2017-02-22 Revised:2017-04-18 Online:2017-12-13 Published:2017-12-31

微通道并行模块化设计制造及规模化制备功能材料

韩腾腾, 张莉, 宣晋, 董政, 徐宏   

  1. 华东理工大学机械与动力工程学院, 化学工程联合国家重点实验室, 上海 200237
  • 通讯作者: 张莉,教授,博士生导师,研究方向为微能源化工过程、高效过程装备。
  • 作者简介:韩腾腾(1992-),男,硕士研究生,研究方向为微过程放大。E-mail:httwithyou@163.com。
  • 基金资助:
    上海市科学技术委员会资助材料基因组工程研究院项目(16DZ2260604)。

Abstract: Advanced material synthesized from microfluidic technology has been largely restrained into the scale of laboratory study, hindering its large scale industrial application.Here, based on channel parallelization concept with numbering up principle, microfluidic large-scale module of eight channels was designed.The module consists of distribution layers for two phases and droplet generation layer under different planes.The module was fabricated with PMMA substrate using laser microfabrication engraving equipment, achieving the large-scale production of uniform droplets.The flow rates of two phases were investigated on the droplets formation of parallelized channels with scaling effect resulting from the significant problem of fluid distribution.Experimental comparison of two arrays showed the circular array with symmetrical arrangement improved the size uniformity of 42.4% compared to the parallel array.Widely applied functional chitosan microspheres were also mass-synthesized with an average diameter of 540.59μm and a CV of 2.73%.The throughput was largely improved while maintaining excellent uniformity compared to individual channel.

Key words: drop-microfluidics, microchannel parallelization, scale-up, modularization design, functional materials

摘要: 液滴微流控技术可控制备功能微粒材料目前一直局限于实验室规模产量,制约着规模化的产业应用。本文基于微通道并行概念,以数量放大为基本原则,设计了八通道并行的微流控放大模块,模块由位于不同平面的两相流体的分配功能区和液滴制备功能区构建组合而成。借助激光雕刻技术以PMMA作为基板材料进行加工制造,实现了规模化制备均匀液滴的目的。同时研究了流速控制对各个通道液滴制备过程的影响,分析了微通道阵列由于流体分配关键问题所产生的放大效应。两种通道阵列形式对比实验表明,环形阵列制备出液滴的均匀性比线性阵列提高近42.4%,主要得益于完全对称的环形阵列减小了结构性因素对流体分配性能的影响。并借助环形并行模块平台大规模制备了具有广阔应用前景的壳聚糖微球,平均粒径为540.59μm,CV值为2.73%,并行放大模块在提升产量的同时确保了微球的高单分散性。

关键词: 液滴微流控, 微通道并行, 放大, 模块化设计, 功能材料

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd