[1] 邵光印,张玉龙,张征湃,等. 不同硅铝比ZSM-5负载铁基催化剂二氧化碳加氢性能[J]. 化工学报,2017,68(2):670-679. SHAO G Y,ZHANG Y L,ZHANG Z P,et al. CO2 hydrogenation over Fe catalysts supported on ZSM-5 zeolite with different ratios of Si/Al[J]. CIESC Journal,2017,68(2):670-679.
[2] 刘昌俊,郭秋婷,叶静云,等. 二氧化碳转化催化剂研究进展及相关问题思考[J]. 化工学报,2016,67(1):6-8. LIU C J,GUO Q T,YE J Y,et al. Perspective on catalyst investigation for CO2 conversion and related issues[J]. CIESC Journal,2016,67(1):6-8.
[3] 巩金龙. CO2化学转化研究进展概述[J]. 化工学报,2017,68(4):1282-1285. GONG J L. A brief overview on recent progress on chemical conversion of CO2[J]. CIESC Journal,2017,68(4):1282-1285.
[4] 靳治良,钱玲,吕功煊. 二氧化碳化学-现状及展望[J]. 化学进展,2010,22(6):1102-1115. JIN Z L,QIAN L,LÜ G X. CO2 chemistry-actuality and expectation[J]. Progress in Chemistry,2010,22(6):1102-1115.
[5] 吴川,张华民,衣宝廉. 化学制氢技术研究进展[J]. 化学进展,2005,17(3):423-429. WU C,ZHANG H M,YI B L. Recent advances in hydrogen generation with chemical methods[J]. Progress in Chemistry,2005,17(3):423-429.
[6] AHMAD H,KAMARUDIN S K,MINGGU L J,et al. Hydrogen from photo-catalytic water splitting process:a review[J]. Renewable and Sustainable Energy Reviews,2015,43:599-610.
[7] ZHOU G L,WU T,XIE H M,et al. Effects of structure on the carbon dioxide methanation performance of Co-based catalysts[J]. International Journal of Hydrogen Energy,2013,38(24):10012-10018.
[8] 崔凯凯,周桂林,谢红梅. 二氧化碳甲烷化催化剂的研究进展[J]. 化工进展,2015,34(3):724-730. CUI K K,ZHOU G L,XIE H M. Research progress in CO2 methanation catalysts[J]. Chemical Industry and Engineering Progress,2015,34(3):724-730.
[9] ZHOU G L,LIU H R,CUI K K,et al. Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation[J]. Applied Surface Science,2016,383(15):248-252.
[10] GARBRINO G,RIANI P,MAGISTRI L,et al. A study of the methanation of carbon dioxide on Ni/Al2O3 catalysts at atmospheric pressure[J]. International Journal of Hydrogen Energy,2014,39(22):11557-11565.
[11] JOO O S,JUNG K D,MOON I,et al. Carbon dioxide hydrogenation to form methanol via a Reverse-Water-Gas-Shift reaction(the CAMERE Process)[J]. Industrial & Engineering Chemistry Research,1999,38(5):1808-1812.
[12] MARTIN O,MART?N A J,MONDELLI C,et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angewandte Chemie International Edition,2016,55(21):6261-6265.
[13] OSHIMA K,SHINAGAWA T,NOGAMI Y,et al. Low temperature catalytic reverse water gas shift reaction assisted by an electric field[J]. Catalysis Today,2014,232:27-32.
[14] DAI B C,ZHOU G L,GE S B,et al. CO2 reverse water-gas shift reaction on mesoporous M-CeO2 catalysts[J]. The Canadian Journal of Chemical Engineering,2017,95:634-642.
[15] 徐海成,戈亮. 二氧化碳加氢逆水汽变换反应的研究进展[J]. 化工进展,2016,35(10):3180-3190. XU H C,GE L. Progress on the catalytic hydrogenation of CO2 via reverse water gas shift reaction[J]. Chemical Industry and Engineering Progress,2016,35(10):3180-3190.
[16] 张晶,孙显锋,乔婧,等. 合成气制芳烃研究进展[J]. 化工进展,2013,32(s1):13-15. ZHANG J,SUN X F,QIAO J,et al. Research advancement of syngas to aromatics[J]. Chemical Industry and Engineering Progress,2013,32(s1):13-15.
[17] 陈维苗,丁云杰,薛飞,等. CO加氢制C2含氧化合物Rh基催化剂中常见助剂的作用[J]. 物理化学学报,2015,31(1):1-10. CHEN W M,DING Y J,XUE F,et al. Role of common promoters in Rh-based catalysts for CO hydrogenation to C2-oxygenates[J]. Acta Physico-Chimica Sinica,2015,31(1):1-10.
[18] YOSHIHARA J,PARKER S C,SCHAFER A,et al. Methanol synthesis and reverse water-gas shift kinetics over clean polycrystalline copper[J]. Catalysis Letters,1995,31(4):313-324.
[19] GOGUET A,MEUNIER F,BREEN J P,et al. Study of the origin of the deactivation of a Pt/CeO2 catalyst during reverse water gas shift (RWGS)reaction[J]. Journal of Catalysis,2004,226(2):382-392.
[20] WANG L C,TAHVIDAR KHAZANEH M,WIDMANN D,et al. TAP reactor studies of the oxidizing capability of CO2 on a Au/CeO2 catalyst-a first step toward identifying a redox mechanism in the Reverse Water-Gas Shift reaction[J]. Journal of Catalysis,2013,302:20-30.
[21] PETTIGREW D J,TRIMM D L. The effects of rare earth oxides on the reverse water-gas shift reaction on palladium/alumina[J]. Catalysis Letters,1994,28(2):313-319.
[22] KIM S S,LEE H H,HONG S C. The effect of the morphological characteristics of TiO2 supports on the reverse water-gas shift reaction over Pt/TiO2 catalysts[J]. Applied Catalysis B:Environmental,2012,119/120:100-108.
[23] MATSUBU J C,ZHANG S,DERITA L,et al. Adsorbate-mediated strongmetal-support interactions in oxide-supported Rh catalysts[J]. Nature Chemistry,2017,9:120-127.
[24] KIM S S,LEE H H,HONG S C. A study on the effect of support's reducibility on the reverse water-gas shift reaction over Pt catalysts[J]. Applied Catalysis A:General,2012,423/424:100-107.
[25] ARANIFARD S,AMMAL S C,HEYDEN A. On the importance of metal-oxide interface sites for the water-gas shift reaction over Pt/CeO2 catalysts[J]. Journal of Catalysis,2014,309:314-324.
[26] PANAGIOTOPOULOU P,KONDARIDES D L. Effects of alkali promotion of TiO2 on the chemisorptive properties and water-gas shift activity of supported noble metal catalysts[J]. Journal of Catalysis,2009,267(1):57-66.
[27] KIM S S,PARK K H,HONG S C. A study of the selectivity of the reverse water-gas-shift reaction over Pt/TiO2 catalysts[J]. Fuel Processing Technology,2013,108:47-54.
[28] CHEN C S,CHENG W H,LIN S S. Enhanced activity and stability of a Cu/SiO2 catalyst for the reverse water gas shift reaction by an iron promoter[J]. Chemical Communications,2001(18):1770-1771.
[29] CHEN C S,CHENG W H,LIN S S. Study of reverse water gas shift reaction by TPD,TPR and CO hydrogenation over potassium-promoted Cu/SiO2 catalyst[J]. Applied Catalysis A:General,2003,238(1):55-67.
[30] CHEN C S,CHENG W H,LIN S S. Study of iron-promoted Cu/SiO2 catalyst on high temperature reverse water gas shift reaction[J]. Applied Catalysis A:General,2004,257(1):97-106.
[31] STONE F S,WALLER D. Cu-ZnO and Cu-ZnO/Al2O3 catalysts for the reverse water-gas shift reaction. The effect of the Cu/Zn ratio on precursor characteristics and on the activity of the derived catalysts[J]. Topics in Catalysis,2003,22(3):305-318.
[32] WANG L H,ZHANG S X,LIU Y. Reverse water gas shift reaction over co-precipitated Ni-CeO2 catalysts[J]. Journal of Rare Earths,2008,26(1):66-70.
[33] WANG L H,LIU H,LIU Y,et al. Influence of preparation method on performance of Ni-CeO2 catalysts for reverse water-gas shift reaction[J]. Journal of Rare Earths,2013,31(6):559-564.
[34] WANG L H,LIU H,LIU Y,et al. Effect of precipitants on Ni-CeO2 catalysts prepared by a co-precipitation method for the reverse water-gas shift reaction[J]. Journal of Rare Earths,2013,31(10):969-974.
[35] LU B,KAWAMOTO K. Preparation of monodispersed NiO particles in SBA-15,and its enhanced selectivity for reverse water gas shift reaction[J]. Journal of Environmental Chemical Engineering,2013,1(3):300-309.
[36] LU B,KAWAMOTO K. Preparation of mesoporous CeO2 and monodispersed NiO particles in CeO2,and enhanced selectivity of NiO/CeO2 for reverse water gas shift reaction[J]. Materials Research Bulletin,2014,53:70-78.
[37] SUN F M,YAN C F,WANG Z D,et al. Ni/Ce-Zr-O catalyst for high CO2 conversion during reverse water gas shift reaction (RWGS)[J]. International Journal of Hydrogen Energy,2015,40(46):15985-15993.
[38] ZONETTI P C,LETICHEVSKY S,GASPAR A B,et al. The NiXCe0.75Zr0.25-XO2 solid solution and the RWGS[J]. Applied Catalysis A:General,2014,475:48-54.
[39] KIM D H,HAN S W,YOON H S,et al. Reverse water gas shift reaction catalyzed by Fe nanoparticles with high catalytic activity and stability[J]. Journal of Industrial and Engineering Chemistry,2015,23:67-71.
[40] KHARAJI A G,SHARIATI A,TAKASSI M A. A novel-alumina supported Fe-Mo bimetallic catalyst for reverse water gas shift reaction[J]. Chinese Journal Chemical Engineering,2013,21(9):1007-1014.
[41] PENA M A,FIERRO J L G. Chemical structures and performance of perovskite oxides[J]. Chemical Reviews,2001,101(7):1981-2017.
[42] YAMAZOE N,TERAOKA Y,SEIYAMA T. TPD and XPS study on thermal behavior of absorbed oxygen in La1-XSrXCoO3[J]. Chemistry Letters,1981,11:1767-1770.
[43] DAZA Y A,KENT R A,YUNG M M,et al. Carbon dioxide conversion by reverse water-gas shift chemical looping on perovskite-type oxides[J]. Industrial & Engineering Chemistry Research,2014,53(14):5828-5837.
[44] KIM D H,PARK J L,PARK E J,et al. Dopant effect of barium zirconate-based perovskite-type catalysts for the intermediate-temperature reverse water gas shift reaction[J]. ACS Catalysis,2014,4(9):3117-3122.
[45] 李永强,朱华星. 铈基氧化物用于VOCS催化燃烧的研究进展[J]. 重庆工商大学学报(自然科学版),2016,33(2):1-5. LI Y Q,ZHU H X. Research progress in ceria based oxides for catalytic combustion of volatile organic compounds[J]. Journal Chongqing Technology Business University (Nat Sci Ed),2016,33(2):1-5.
[46] LIU Y J,LI Z F,XU H B,et al. Reverse water-gas shift reaction over ceria nanocube synthesized by hydrothermal method[J]. Catalysis Communications,2016,76:1-6.
[47] 黄仲涛,耿建铭. 工业催化[M]. 2版. 北京:化学工业出版社,2006:85. HUANG Z T,GENG J M. Industrial catalysis[M]. 2nd ed. Beijing:Chemical Industry Press,2006:85.
[48] CHEN C S,CHENG W H,LIN S S. Mechanism of CO formation in reverse water-gas shift reaction over Cu/Al2O3 catalyst[J]. Catalysis Letters,2000,68:45-48. |