Chemical Industry and Engineering Progree ›› 2015, Vol. 34 ›› Issue (08): 2907-2915.DOI: 10.16085/j.issn.1000-6613.2015.08.001
Previous Articles Next Articles
HOU Dandan, LIU Dahuan, YANG Qingyuan, ZHONG Chongli
Received:
2015-04-28
Revised:
2015-05-26
Online:
2015-08-05
Published:
2015-08-05
侯丹丹, 刘大欢, 阳庆元, 仲崇立
通讯作者:
刘大欢,教授,研究方向为纳微结构材料合成。E-mail liudh@mail.buct.edu.cn;仲崇立,教授,研究方向为计算化学、化工热力学及新型纳微结构材料分子设计与合成。E-mail zhongcl@mail.buct.edu.cn。
作者简介:
侯丹丹(1989—),女,硕士研究生,研究方向为金属-有机骨架材料的应用。
基金资助:
CLC Number:
HOU Dandan, LIU Dahuan, YANG Qingyuan, ZHONG Chongli. Progress of metal-organic framework-based membranes for gas separation[J]. Chemical Industry and Engineering Progree, 2015, 34(08): 2907-2915.
侯丹丹, 刘大欢, 阳庆元, 仲崇立. 金属-有机骨架材料在气体膜分离中的研究进展[J]. 化工进展, 2015, 34(08): 2907-2915.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2015.08.001
[1] Zornoza B, Tellez C, Coronas J, et al. Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential[J]. Microporous Mesoporous Mater., 2013, 166: 67-78. [2] Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. J. Membr. Sci., 1991, 62(2): 165-185. [3] Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423(6941): 705-714. [4] Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations[J]. Chem. Rev., 2011, 112(2): 869-932. [5] Zhang R, Ji S, Wang N, et al. Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes[J]. Angew. Chem. Int. Ed., 2014, 53(37): 9775-9779. [6] Shah M, McCarthy M C, Sachdeva S, et al. Current status of metal-organic framework membranes for gas separations: Promises and challenges[J]. Ind. Eng. Chem. Res., 2012, 51(5): 2179-2199. [7] 曹发. 金属-有机骨架材料膜的制备及其气体分离性能的研究[D]. 北京: 北京化工大学, 2012. [8] 吴栋. 金属-有机骨架材料吸附分离和膜分离性能研究[D]. 北京: 北京化工大学, 2013. [9] 阳庆元, 刘大欢, 仲崇立. 金属-有机骨架材料的计算化学研究[J]. 化工学报, 2009, 60(4): 805-819. [10] Jeazet H B T, Staudt C, Janiak C. Metal-organic frameworks in mixed-matrix membranes for gas separation[J]. Dalton Trans., 2012, 41(46): 14003-14027. [11] Keskin S, Sholl D S. Assessment of a metal-organic framework membrane for gas separations using atomically detailed calculations: CO2, CH4, N2, H2 mixtures in MOF-5[J]. Ind. Eng. Chem. Res., 2008, 48(2): 914-922. [12] Keskin S, Liu J, Johnson J K, et al. Atomically detailed models of gas mixture diffusion through Cu-BTC membranes[J]. Microporous Mesoporous Mater., 2009, 125(1): 101-106. [13] Atci E, Erucar I, Keskin S. Adsorption and transport of CH4, CO2, H2 mixtures in a bio-MOF material from molecular simulations[J]. J. Phys. Chem. C, 2011, 115(14): 6833-6840. [14] Liu J, Keskin S, Sholl D S, et al. Molecular simulations and theoretical predictions for adsorption and diffusion of CH4/H2 and CO2/CH4 mixtures in ZIFs[J]. J. Phys. Chem. C, 2011, 115(25): 12560-12566. [15] Keskin S. Atomistic simulations for adsorption, diffusion, and separation of gas mixtures in zeolite imidazolate frameworks[J]. J. Phys. Chem. C, 2010, 115(3): 800-807. [16] Watanabe T, Keskin S, Nair S, et al. Computational identification of a metal organic framework for high selectivity membrane-based CO2/CH4 separations: Cu(hfipbb)(H2hfipbb)0.5[J]. Phys. Chem. Chem. Phys., 2009, 11(48): 11389-11394. [17] Atci E, Keskin S. Understanding the potential of zeolite imidazolate framework membranes in gas separations using atomically detailed calculations[J]. J. Phys. Chem. C, 2012, 116(29): 15525-15537. [18] Keskin S. High CO2 selectivity of a microporous metal-imidazolate framework: A molecular simulation study[J]. Ind. Eng. Chem. Res., 2011, 50(13): 8230-8236. [19] Hertäg L, Bux H, Caro J, et al. Diffusion of CH4 and H2 in ZIF-8[J]. J. Membr. Sci., 2011, 377(1): 36-41. [20] Krishna R, van Baten J M. In silico screening of metal-organic frameworks in separation applications[J]. Phys. Chem. Chem. Phys., 2011, 13(22): 10593-10616. [21] Wu D, Maurin G, Yang Q, et al. Computational exploration of a Zr-carboxylate based metal-organic framework as a membrane material for CO2 capture[J]. J. Mater. Chem. A, 2014, 2(6): 1657-1661. [22] Ozturk T N, Keskin S. Computational screening of porous coordination networks for adsorption and membrane-based gas separations[J]. J. Phys. Chem. C, 2014, 118(25): 13988-13997. [23] Keskin S. Comparing performance of CPO and IRMOF membranes for gas separations using atomistic models[J]. Ind. Eng. Chem. Res., 2010, 49(22): 11689-11696. [24] Haldoupis E, Nair S, Sholl D S. Efficient calculation of diffusion limitations in metal organic framework materials: A tool for identifying materials for kinetic separations[J]. J. Am. Chem. Soc., 2010, 132(21): 7528-7539. [25] Gurdal Y, Keskin S. Atomically detailed modeling of metal organic frameworks for adsorption, diffusion, and separation of noble gas mixtures[J]. Ind. Eng. Chem. Res., 2012, 51(21): 7373-7382. [26] Thornton A W, Dubbeldam D, Liu M S, et al. Feasibility of zeolitic imidazolate framework membranes for clean energy applications[J]. Energy Environ. Sci., 2012, 5(6): 7637-7646. [27] Keskin S, Sholl D S. Selecting metal organic frameworks as enabling materials in mixed matrix membranes for high efficiency natural gas purification[J]. Energy Environ. Sci., 2010, 3(3): 343-351. [28] Erucar I, Keskin S. Screening metal-organic framework-based mixed-matrix membranes for CO2/CH4 separations[J]. Ind. Eng. Chem. Res., 2011, 50(22): 12606-12616. [29] Erucar I, Keskin S. Computational screening of metal organic frameworks for mixed matrix membrane applications[J]. J. Membr. Sci., 2012, 407-408: 221-230. [30] Yilmaz G, Keskin S. Molecular modeling of MOF and ZIF-filled MMMs for CO2/N2 separations[J]. J. Membr. Sci., 2014, 454: 407-417. [31] 仲崇立, 刘大欢, 阳庆元. 金属-有机骨架材料的构效关系及设计[M]. 北京: 科学出版社, 2013. [32] Huang A, Bux H, Steinbach F, et al. Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker[J]. Angew. Chem. Int. Ed., 2010, 49(29): 4958-4961. [33] Huang A, Chen Y, Wang N, et al. A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation[J]. Chem. Commun., 2012, 48(89): 10981-10983. [34] Huang A, Dou W, Caro J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization[J]. J. Am. Chem. Soc., 2010, 132(44): 15562-15564. [35] Li Y S, Liang F Y, Bux H, et al. Molecular sieve membrane: Supported metal-organic framework with high hydrogen selectivity[J]. Angew. Chem. Int. Ed., 2010, 49(3): 548-551. [36] Liu Y, Zeng G, Pan Y, et al. Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties[J]. J. Membr. Sci., 2011, 379(1-2): 46-51. [37] Zhang C, Xiao Y, Liu D, et al. A hybrid zeolitic imidazolate framework membrane by mixed-linker synthesis for efficient CO2 capture[J]. Chem. Commun., 2012, 49(6): 600-602. [38] Nan J, Dong X, Wang W, et al. Step-by-step seeding procedure for preparing HKUST-1 membrane on porous α-alumina support[J]. Langmuir, 2011, 27(8): 4309-4312. [39] Hermes S, Schröder F, Chelmowski R, et al. Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3- terminated self-assembled monolayers on Au (111)[J]. J. Am. Chem. Soc., 2005, 127(40): 13744-13745. [40] Hermes S, Zacher D, Baunemann A, et al. Selective growth and MOCVD loading of small single crystals of MOF-5 at alumina and silica surfaces modified with organic self-assembled monolayers[J]. Chem. Mater., 2007, 19(9): 2168-2173. [41] Yoo Y, Lai Z, Jeong H K. Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth[J]. Microporous Mesoporous Mater., 2009, 123(1): 100-106. [42] Liu Y, Ng Z, Khan E A, et al. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates[J]. Microporous Mesoporous Mater., 2009, 118(1-3): 296-301. [43] Bux H, Liang F, Li Y, et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis[J]. J. Am. Chem. Soc., 2009, 131(44): 16000-16001. [44] Li Y S, Bux H, Feldhoff A, et al. Controllable synthesis of metal-organic frameworks: From MOF nanorods to oriented MOF membranes[J]. Adv. Mater., 2010, 22(30): 3322-3326. [45] Bux H, Feldhoff A, Cravillon J, et al. Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation[J]. Chem. Mater., 2011, 23(8): 2262-2269. [46] Huang A, Wang N, Kong C, et al. Organosilica-functionalized zeolitic imidazolate framework ZIF-90 membrane with high gas-separation performance[J]. Angew. Chem. Int. Ed., 2012, 51(42): 10551-10555. [47] Huang A, Caro J. Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity[J]. Angew. Chem. Int. Ed., 2011, 50(21): 4979-4982. [48] Dong X, Huang K, Liu S, et al. Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane: Defect formation and elimination[J]. J. Mater. Chem., 2012, 22(36): 19222-19227. [49] Huang K, Dong Z, Li Q, et al. Growth of a ZIF-8 membrane on the inner-surface of a ceramic hollow fiber via cycling precursors[J]. Chem. Commun., 2013, 49(87): 10326-10328. [50] Bux H, Chmelik C, van Baten J M, et al. Novel MOF-membrane for molecular sieving predicted by IR-diffusion studies and molecular modeling[J]. Adv. Mater., 2010, 22(42): 4741-4743. [51] Cao F, Zhang C, Xiao Y, et al. Helium recovery by a Cu-BTC metal-organic framework membrane[J]. Ind. Eng. Chem. Res., 2012, 51(34): 11274-11278. [52] Gao H, Hu Y, Xuan Y, et al. Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures[J]. Science, 2014, 346(6215): 1352-1356. [53] Zhang X, Liu Y, Kong L, et al. A simple and scalable method for preparing low-defect ZIF-8 tubular membranes[J]. J. Mater. Chem. A, 2013, 1(36): 10635-10638. [54] Zhang F, Zou X, Gao X, et al. Hydrogen selective NH2-MIL-53 (Al) MOF membranes with high permeability[J]. Adv. Funct. Mater., 2012, 22(17): 3583-3590. [55] Zornoza B, Seoane B, Zamaro J M, et al. Combination of MOFs and zeolites for mixed-matrix membranes[J]. Chem. Phys. Chem., 2011, 12(15): 2781-2785. [56] Zornoza B, Martinez-Joaristi A, Serra-Crespo P, et al. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures[J]. Chem. Commun., 2011, 47(33): 9522-9524. [57] Car A, Stropnik C, Peinemann K V. Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation[J]. Desalination, 2006, 200(1-3): 424-426. [58] Sorribas S, Zornoza B, Téllez C, et al. Mixed matrix membranes comprising silica-(ZIF-8) core-shell spheres with ordered meso-microporosity for natural-and bio-gas upgrading[J]. J. Membr. Sci., 2014, 452: 184-192. [59] Perez E V, Balkus K J, Ferraris J P, et al. Mixed-matrix membranes containing MOF-5 for gas separations[J]. J. Membr. Sci., 2009, 328(1-3): 165-173. [60] Ordonez M J C, Balkus K J, Ferraris J P, et al. Molecular sieving realized with ZIF-8/Matrimid mixed-matrix membranes[J]. J. Membr. Sci., 2010, 361(1-2): 28-37. [61] Zhang Y, Musselman I H, Ferraris J P, et al. Gas permeability properties of Matrimid Membranes® containing the metal-organic framework Cu-BPY-HFS[J]. J. Membr. Sci., 2008, 313(1-2): 170-181. [62] Shahid S, Nijmeijer K. High pressure gas separation performance of mixed-matrix polymer membranes containing mesoporous Fe (BTC)[J]. J. Membr. Sci., 2014, 459: 33-44. [63] Yang T, Xiao Y, Chung T S. Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification[J]. Energy Environ. Sci., 2011, 4(10): 4171-4180. [64] Song Q, Nataraj S K, Roussenova M V, et al. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation[J]. Energy Environ. Sci., 2012, 5(8): 8359-8369. [65] Guo X, Huang H, Ban Y, et al. Mixed matrix membranes incorporated with amine-functionalized titanium-based metal-organic framework for CO2/CH4 separation[J]. J. Membr. Sci., 2015.478: 130-139. [66] Xiao Y, Guo X, Huang H, et al. Synthesis of MIL-88B (Fe)/Matrimid mixed-matrix membranes with high hydrogen permselectivity[J]. RSC Adv., 2015, 5(10): 7253-7259. [67] Ma J, Ying Y, Yang Q, et al. Mixed-matrix membranes containing functionalized porous metal-organic polyhedrons for the effective separation of CO2/CH4 mixture[J]. Chem. Commun., 2015, 51(20): 4249-4251. [68] Li T, Pan Y, Peinemann K V, et al. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers[J]. J. Membr. Sci., 2013, 425: 235-242. [69] Thompson J A, Chapman K W, Koros W J, et al. Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes[J]. Microporous Mesoporous Mater., 2012, 158: 292-299. [70] Yang T, Chung T S. High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor[J]. Int. J. Hydrogen Energy, 2013, 38(1): 229-239. [71] Askari M, Chung T S. Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes[J]. J. Membr. Sci., 2013, 444: 173-183. [72] Zhang C, Dai Y, Johnson J R, et al. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations[J]. J. Membr. Sci., 2012, 389: 34-42. [73] Dai Y, Johnson J R, Karvan O, et al. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations[J]. J. Membr. Sci., 2012, 401: 76-82. [74] Bae T H, Lee J S, Qiu W, et al. A high performance gas separation membrane containing submicrometer-sized metal-organic framework crystals[J]. Angew. Chem. Int. Ed., 2010, 49(51): 9863-9866. [75] Yang T, Chung T S. Room temperature synthesis of ZIF-90 nanocrystals and the derived nano-composite membranes for hydrogen separation[J]. J. Mater. Chem. A, 2013, 1(19): 6081-6090. [76] Rodenas T, Luz I, Prieto G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nat. Mater., 2015, 14(1): 48-55. [77] Cao L, Tao K, Huang A, et al. A highly permeable mixed matrix membrane containing CAU-1-NH2 for H2 and CO2 separation[J]. Chem. Commun., 2013, 49(76): 8513-8515. [78] Hu J, Cai H, Ren H, et al. Mixed-matrix membrane hollow fibers of Cu3(BTC)2 MOF and polyimide for gas separation and adsorption[J]. Ind. Eng. Chem. Res., 2010, 49(24): 12605-12612. |
[1] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[2] | CAI Mingwei, WANG Zhi, LU Xiaochuang, ZHUANG Junwei, WU Jiahao, ZHANG Shiyang, MIN Yonggang. Polyimide membranes for hydrogen separation: A review [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5232-5248. |
[3] | SUN Deyun, HU Yanhong, LIU Peng, TANG Mao, HU Ze, LIU Zhaogang, WU Jinxiu. Interaction mechanism of CTAB and Ce3+ in different cerium salt systems (nitrate, sulfate, chloride) [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3212-3220. |
[4] | WANG Long, LIU Yongfeng, BI Guijun, SONG Jin’ou. Characteristics of diesel combustion under CO2/O2 atmosphere by quantum chemistry calculations [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2948-2958. |
[5] | GAO Yifei, YI Qun, QI Kai, GAO Lili, LI Xuelian. Research status and application in H2/CH4 separation of MOFs-based membrane [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6395-6407. |
[6] | Qian XUE, Xiaolin WANG, Zunzhao LI, Mingrui LIU, Wei ZHAO. Research progresses in hydrate based technologies and processes [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 722-735. |
[7] | GUO Haiyan, PENG Donglai, FENG Xiaoquan, JIN Yehao, TIAN Zhihong, WANG Jing, ZHANG Yatao. Progress in the membranes of polymers of intrinsic micro-porosity PIM-1 for gas separation [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5577-5589. |
[8] | LI Xingyan, WANG Mo, DAI Xuan, PENG Xinhua, TANG Shuangling. Nitration of n-hexane with NO2 and theoretical calculation [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5491-5498. |
[9] | Shuanshi FAN, Jingren ZHOU, Luling LI, Na WEI, Haitao LI. Simulation and analysis of CO2/N2 separation process by equilibrium stage hydrate-based gas separation method [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3600-3607. |
[10] | Zhizhou XU, Wei LU, Wenjie ZHANG, Qianci MO. A design of cascade type gas separation system based on thermal transpiration effect [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2336-2344. |
[11] | LI Xueqian, ZHOU Jinsong, ZHOU Qixin, MAO Juezhen, CAO Hui. Promotion mechanism of hydrogen sulfide on elemental mercury removal from simulated syngas by supported cobalt-cerium bimetallic sorbent [J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4493-4499. |
[12] | CHEN Botao, HAN Lina, CHANG Liping, WANG Jiancheng. Theoretic research on the adsorption and oxidation mechanism of mercury [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 436-441. |
[13] | LI Xiaoqiang, DING Yudong, LIAO Qiang, ZHU Xun, GUO Liheng, WANG Hong. Review on porous liquids and its application in carbon dioxide sequestration [J]. Chemical Industry and Engineering Progress, 2017, 36(09): 3362-3372. |
[14] | QIN Xi, SUN Yuxiu, WANG Naixin, XIE Yabo, LI Jianrong. Surface modifications for preparation of MOF thin films [J]. Chemical Industry and Engineering Progress, 2017, 36(04): 1306-1315. |
[15] | LI Hao, DU Naixu, YANG Kai, DAI Yan, HE Gaohong. Facile fabrication and gas separation properties of Cu-BTC/ethyl cellulose mixed matrix membranes [J]. Chemical Industry and Engineering Progree, 2016, 35(12): 3970-3975. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |