Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (6): 2948-2958.DOI: 10.16085/j.issn.1000-6613.2021-1478
• Energy processes and technology • Previous Articles Next Articles
WANG Long1(), LIU Yongfeng1(), BI Guijun2(), SONG Jin’ou3
Received:
2021-07-13
Revised:
2021-10-20
Online:
2022-06-21
Published:
2022-06-10
Contact:
LIU Yongfeng,BI Guijun
通讯作者:
刘永峰,毕贵军
作者简介:
王龙(1996—),男,硕士研究生,研究方向为内燃机。E-mail:基金资助:
CLC Number:
WANG Long, LIU Yongfeng, BI Guijun, SONG Jin’ou. Characteristics of diesel combustion under CO2/O2 atmosphere by quantum chemistry calculations[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2948-2958.
王龙, 刘永峰, 毕贵军, 宋金瓯. 基于量子化学计算柴油在CO2/O2氛围下的燃烧特性[J]. 化工进展, 2022, 41(6): 2948-2958.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1478
参数 | 数值 |
---|---|
燃油温度/K | 298 |
燃烧室初始温度/K | 850 |
燃烧室初始压力/MPa | 3.0 |
喷油压力/MPa | 120 |
加热温度间隔/K | 100和50 |
加压间隔/MPa | 10和5 |
喷孔直径/mm | 0.06 |
单次喷油量/mg | 18.4 |
喷油脉宽/ms | 0.5 |
摄影机摄速/FPS | 19900 |
曝光时间/μs | 20 |
光圈 | 2.8 |
分辨率 | 256×512 |
参数 | 数值 |
---|---|
燃油温度/K | 298 |
燃烧室初始温度/K | 850 |
燃烧室初始压力/MPa | 3.0 |
喷油压力/MPa | 120 |
加热温度间隔/K | 100和50 |
加压间隔/MPa | 10和5 |
喷孔直径/mm | 0.06 |
单次喷油量/mg | 18.4 |
喷油脉宽/ms | 0.5 |
摄影机摄速/FPS | 19900 |
曝光时间/μs | 20 |
光圈 | 2.8 |
分辨率 | 256×512 |
1 | 陈旭, 朱永郁, 陶军, 等. 低氮燃烧器的NO x 排放性能及运行优化[J]. 化工进展, 2021, 40(2): 1069-1076. |
CHEN Xu, ZHU Yongyu, TAO Jun, et al. NO x emission performance and operation optimization of low nitrogen burner[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1069-1076. | |
2 | 曹晨, 秦晓飞, 张旭斌, 等. 聚甲氧基二甲醚合成反应动力学研究进展[J]. 化工进展, 2020, 39(12): 5021-5028. |
CAO Chen, QIN Xiaofei, ZHANG Xubin, et al. Advances of formation kinetics of polymethoxy dimethyl ether[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5021-5028. | |
3 | 王志宁, 杨协和, 张扬, 等. 内/外烟气再循环对天然气燃烧NO x 生成的影响[J]. 化工进展, 2019, 38(9): 4327-4334. |
WANG Zhining, YANG Xiehe, ZHANG Yang, et al. I-/e-FGR effect on NO x emission of natural gas combustion[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4327-4334. | |
4 | LIU Y F, JIA X S, PEI P C, et al. Simulation and experiment for oxygen-enriched combustion engine using liquid oxygen to solidify CO2 [J]. Chinese Journal of Mechanical Engineering, 2016, 29(1): 188-194. |
5 | TOPOROV D, BOCIAN P, HEIL P, et al. Detailed investigation of a pulverized fuel swirl flame in CO2/O2 atmosphere[J]. Combustion and Flame, 2008, 155(4): 605-618. |
6 | PANAHI A, SIRUMALLA S K, WEST R H, et al. Temperature and oxygen partial pressure dependencies of the coal-bound nitrogen to NO x conversion in O2/CO2 environments[J]. Combustion and Flame, 2019, 206: 98-111. |
7 | LIU Y, CHENG J, ZOU C, et al. Ignition delay times of ethane under O2/CO2 atmosphere at different pressures by shock tube and simulation methods[J]. Combustion and Flame, 2019, 204: 380-390. |
8 | KOROGLU B, PRYOR O M, LOPEZ J, et al. Shock tube ignition delay times and methane time-histories measurements during excess CO2 diluted oxy-methane combustion[J]. Combustion and Flame, 2016, 164: 152-163. |
9 | HIGGINS B, SIEBERS D. Measurement of the flame lift-off location on Dl diesel sprays using OH chemiluminescence[J]. SAE Technical Paper, 2001, . |
10 | SIEBERS D L, HIGGINS B. Flame lift-off on direct-injection diesel sprays under quiescent conditions[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001, 110. |
11 | SIEBERS D L, HIGGINS B, PICKETT L. Flame lift-off on direct-injection diesel fuel jets: oxygen concentration effects[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2002. |
12 | MUELLER C J, PITZ W J, PICKETT L M, et al. Effects of oxygenates on soot processes in DI diesel engines: experiments and numerical simulations[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2003, 112, 964-982. |
13 | EISMARK J, CHRISTENSEN M, ANDERSSON M, et al. Role of fuel properties and piston shape in influencing soot oxidation in heavy-duty low swirl diesel engine combustion[J]. Fuel, 2019, 254: 115568. |
14 | PASTOR J V, GARCÍA A, MICÓ C, et al. Experimental study of influence of liquefied petroleum gas addition in hydrotreated vegetable oil fuel on ignition delay, flame lift off length and soot emission under diesel-like conditions[J]. Fuel, 2020, 260: 116377. |
15 | EAGLE W E, MALBEC L M, MUSCULUS M P. Measurements of liquid length, vapor penetration, ignition delay, and flame lift-off length for the engine combustion network ‘spray B’ in a 2.34 L heavy-duty optical diesel engine[J]. SAE International Journal of Engines, 2016, 9(2): 910-931. |
16 | YIN Z H, CHU D Y, GENG P L, et al. Visualization of combustion characteristic of diesel in premixed methanol-air mixture atmosphere of different ambient temperature in a constant volume chamber[J]. Fuel, 2016, 174: 242-250. |
17 | KAHILA H, WEHRFRITZ A, KAARIO O, et al. Large-eddy simulation on the influence of injection pressure in reacting Spray A[J]. Combustion and Flame, 2018, 191: 142-159. |
18 | TAGLIANTE F, MALBEC L M, BRUNEAUX G, et al. Experimental study of the stabilization mechanism of a lifted Diesel-type flame using combined optical diagnostics and laser-induced plasma ignition[J]. Combustion and Flame, 2018, 197: 215-226. |
19 | TAGLIANTE F, POINSOT T, PICKETT L M, et al. A conceptual model of the flame stabilization mechanisms for a lifted Diesel-type flame based on direct numerical simulation and experiments[J]. Combustion and Flame, 2019, 201: 65-77. |
20 | PURVIS G D, BARTLETT R J. A full coupled-cluster singles and doubles model: the inclusion of disconnected triples[J]. The Journal of Chemical Physics, 1982, 76(4): 1910-1918. |
21 | GRAJALES-GONZÁLEZ E, MONGE-PALACIOS M, SARATHY S M. A theoretical study of the - and HO -assisted propen-2-ol tautomerizations: reactive systems to evaluate collision efficiency definitions on chemically activated reactions using SS-QRRK theory[J]. Combustion and Flame, 2021, 225: 485-498. |
22 | GRIMME S. Semiempirical hybrid density functional with perturbative second-order correlation[J]. The Journal of Chemical Physics, 2006, 124(3): 034108. |
23 | GAO J, GUAN Y L, LOU J P, et al. Kinetic modeling for unimolecular β-scission of the methoxymethyl radical from quantum chemical and RRKM analyses[J]. Combustion and Flame, 2018, 197: 243-253. |
24 | ZHANG R M, TRUHLAR D G, XU X F. Kinetics of the toluene reaction with OH radical[J]. Research, 2019. DOI: 10.34133/2019/5373785 . |
25 | LU T, CHEN Q X. Shermo: a general code for calculating molecular thermochemistry properties[J]. Computational and Theoretical Chemistry, 2021, 1200: 113249. |
26 | CANNEAUX S, BOHR F, HENON E. KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results[J]. Journal of Computational Chemistry, 2014, 35(1): 82-93. |
27 | XING L L, BAO J L, WANG Z D, et al. Hydrogen shift isomerizations in the kinetics of the second oxidation mechanism of alkane combustion. Reactions of the hydroperoxypentylperoxy OOQOOH radical[J]. Combustion and Flame, 2018, 197: 88-101. |
28 | MEHL M, PITZ W J, WESTBROOK C K, et al. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions[J]. Proceedings of the Combustion Institute, 2011, 33(1): 193-200. |
29 | BURKE U, SOMERS K P, O’TOOLE P, et al. An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures[J]. Combustion and Flame, 2015, 162(2): 315-330. |
30 | LU T F, LAW C K. A directed relation graph method for mechanism reduction[J]. Proceedings of the Combustion Institute, 2005, 30(1):1333-1341. |
31 | SHI Y, GE H W, BRAKORA J L, et al. Automatic chemistry mechanism reduction of hydrocarbon fuels for HCCI engines based on DRGEP and PCA methods with error control[J]. Energy & Fuels, 2010, 24(3): 1646-1654. |
32 | LU T, CHEN F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
33 | HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38. |
34 | WALTON S M, HE X, ZIGLER B T, et al. An experimental investigation of iso-octane ignition phenomena[J]. Combustion and Flame, 2007, 150(3): 246-262. |
35 | CHOUDHARY R, GIRARD J J, PENG Y Z, et al. Measurement of the reaction rate of H+O2+M→HO2+M, for M=Ar, N2, CO2, at high temperature with a sensitive OH absorption diagnostic[J]. Combustion and Flame, 2019, 203: 265-278. |
36 | LIU Y F, SHENG Y Q, WEI P, et al. The third body effect of carbon dioxide on N-heptane ignition delay characteristics under O2/CO2 conditions[J]. Combustion Science and Technology, 2021. DOI: 10.1080/00102202.2021.1893702 . |
37 | DEC J E. A conceptual model of DI diesel combustion based on laser-sheet imaging[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997, 106:1319-1348. |
38 | CURRAN H J, FISHER E M, GLAUDE P A, et al. Detailed chemical kinetic modeling of diesel combustion with oxygenated fuels[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. |
39 | PRYOR O, BARAK S, KOROGLU B, et al. Measurements and interpretation of shock tube ignition delay times in highly CO2 diluted mixtures using multiple diagnostics[J]. Combustion and Flame, 2017, 180: 63-76. |
40 | KNOX B W, GENZALE C L, et al. Scaling combustion recession after end of injection in diesel sprays[J]. Combustion and Flame, 2017, 177:24-36. |
41 | JARRAHBASHI D, KIM S, GENZALE C L. Simulation of combustion recession after end-of-injection at diesel engine conditions[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(10): 102804. |
[1] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[4] | LI Chunli, HAN Xiaoguang, LIU Jiapeng, WANG Yatao, WANG Chenxi, WANG Honghai, PENG Sheng. Research progress of liquid distributors in packed columns [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4479-4495. |
[5] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[6] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[7] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[8] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[9] | LYU Chao, ZHANG Xiwen, JIN Lijian, YANG Linjun. Efficient capture of CO2 by a new biphasic solvent-ionic liquid system [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3226-3232. |
[10] | TAO Mengqi, LIU Meihong, KANG Yuchi. Analysis of fluid across a single cylinder and two parallel cylinders in a micro flow channel by micro-PIV [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2836-2844. |
[11] | WANG Keju, ZHAO Cheng, HU Xiaomei, YUN Junge, WEI Ninghan, JIANG Xueying, ZOU Yun, CHEN Zhihang. Research progress of low temperature catalytic oxidation of VOCs by metal oxides [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2402-2412. |
[12] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[13] | HE Zhiyong, GUO Tianfo, WANG Jinli, LYU Feng. Progress of CO2/epoxide copolymerization catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1847-1859. |
[14] | FU Le, YANG Yang, XU Wenqing, GENG Zanbu, ZHU Tingyu, HAO Runlong. Research progress in CO2 capture technology using novel biphasic organic amine absorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080. |
[15] | CHEN Chongming, ZENG Siming, LUO Xiaona, SONG Guosheng, HAN Zhongge, YU Jinxing, SUN Nannan. Preparation and performance of carbon supported potassium-based CO2 adsorbent derived from hyper-cross linked polymers [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1540-1550. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |