Chemical Industry and Engineering Progree ›› 2015, Vol. 34 ›› Issue (06): 1501-1510.DOI: 10.16085/j.issn.1000-6613.2015.06.001
Previous Articles Next Articles
TIAN Zhijian1,2, LIU Hao1
Received:
2015-01-07
Revised:
2015-01-30
Online:
2015-06-05
Published:
2015-06-05
田志坚1,2, 刘浩1
通讯作者:
田志坚(1970—),男,博士,研究员,博士生导师,主要从事洁净能源领域新催化过程及新催化材料的研发工作。E-mail:tianz@dicp.ac.cn。
作者简介:
田志坚(1970—),男,博士,研究员,博士生导师,主要从事洁净能源领域新催化过程及新催化材料的研发工作。E-mail:tianz@dicp.ac.cn。
基金资助:
CLC Number:
TIAN Zhijian, LIU Hao. Ionothermal synthesis of zeolitic molecular sieves:Properties, progress and prospect[J]. Chemical Industry and Engineering Progree, 2015, 34(06): 1501-1510.
田志坚, 刘浩. 离子热合成沸石分子筛:技术特性、研究进展与应用前景[J]. 化工进展, 2015, 34(06): 1501-1510.
[1] Cooper E R, Andrews C D, Wheatley P S, et al. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues[J]. Nature, 2004, 430(7003):1012-1016. [2] Taubert A, Li Z H. Inorganic materials from ionic liquids[J]. Dalton Trans., 2007(7):723-727. [3] Parnham E R, Morris R E. Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic-organic hybrids[J]. Acc. Chem. Res., 2007, 40(10):1005-1013. [4] Morris R E. Ionothermal synthesis-Ionic liquids as functional solvents in the preparation of crystalline materials[J]. Chem. Commun., 2009, 21:2990-2998. DOI:10.1039/B902611H. [5] Ma Z, Yu J H, Dai S. Preparation of inorganic materials using ionic liquids[J]. Adv. Mater., 2010, 22(2):261-285. [6] Freudenmann D, Wolf S, Wolff M, et al. Ionic liquids:New perspectives for inorganic synthesis?[J]. Angew. Chem. Int. Ed., 2011, 50(47):11050-11060. [7] 王亚松, 徐云鹏, 田志坚, 等. 离子热法合成分子筛的研究进展[J]. 催化学报, 2012, 33(1):39-50. [8] 顾彦龙, 石峰, 邓友全. 室温离子液体:一类新型的软介质和功能材料[J]. 科学通报, 2004, 49(6):515-521. [9] Weingärtner H. Understanding ionic liquids at the molecular level:Facts, problems, and controversies[J]. Angew. Chem. Int. Ed., 2008, 47:654-670. [10] 韦露, 樊友军. 低共熔溶剂及其应用研究进展[J]. 化学通报:印刷版, 2011, 74(4):333-339. [11] Abbott A P, Capper G, Davies D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chem. Commun., 2003, 1:70-71. DOI:10.1039/B210714G. [12] Ma H J, Tian Z J, Xu R S, et al. Effect of water on the ionothermal synthesis of molecular sieves[J]. J. Am. Chem. Soc., 2008, 130(26):8120-8121. [13] Cammarata L, Kazarian S G, Salter P A, et al. Molecular states of water in room temperature ionic liquids[J]. Phys. Chem. Chem. Phys., 2001, 3(23):5192-5200. [14] Hanke C G, Lynden-Bell R M. A simulation study of water-dialkylimidazolium ionic liquid mixtures[J]. J. Phys. Chem. B, 2003, 107(39):10873-10878. [15] Danten Y, Cabaço M I, Besnard M. Interaction of water highly diluted in 1-alkyl-3-methyl imidazolium ionic liquids with the PF6- and BF4- anions[J]. J. Phys. Chem. A, 2009, 113(12):2873-2889. [16] Cai R, Liu Y, Gu S, et al. Ambient pressure dry-gel conversion method for zeolite MFI synthesis using ionic liquid and microwave heating[J]. J. Am. Chem. Soc., 2010, 132(37):12776-12777. [17] Wragg D S, Slawin A M Z, Morris R E. The role of added water in the ionothermal synthesis of microporous aluminium phosphates[J]. Solid State Sci., 2009, 11(2):411-416. [18] Drylie E A, Wragg D S, Parnham E R, et al. Ionothermal synthesis of unusual choline-templated cobalt aluminophosphates[J]. Angew. Chem. Int. Ed., 2007, 46(41):7839-7843. [19] Liu H, Tian Z J, Gies H, et al. Mn2+ cation-directed ionothermal synthesis of an open-framework fluorinated aluminium phosphite-phosphate[J]. RSC Adv., 2014, 4(55):29310-29313. [20] Wang L, Xu Y P, Wei Y, et al. Structure-directing role of amines in the ionothermal synthesis[J]. J. Am. Chem. Soc., 2006, 128(23):7432-7433. [21] 舒静, 任丽丽, 张铁珍, 等. 微波辐射在催化剂制备中的应用[J]. 化工进展, 2008, 27(3):352-357. [22] Xu Y P, Tian Z J, Wang S J, et al. Microwave-enhanced ionothermal synthesis of aluminophosphate molecular sieves[J]. Angew. Chem. Int. Ed., 2006, 45(24):3965-3970. [23] Taulelle F, Haouas M, Gerardin C, et al. NMR of microporous compounds:From in situ reactions to solid paving[J]. Colloids Surf. A, 1999, 158(1-2):299-311. [24] Xu R S, Zhang W P, Guan J, et al. New insights into the role of amines in the synthesis of molecular sieves in ionic liquids[J]. Chem. Eur. J., 2009, 15(21):5348-5354. [25] Xu R S, Shi X C, Zhang W P, et al. Cooperative structure-directing effect in the synthesis of aluminophosphate molecular sieves in ionic liquids[J]. Phys. Chem. Chem. Phys., 2010, 12(10):2443-2449. [26] Wragg D S, Byrne P J, Giriat G, et al. In situ comparison of ionothermal kinetics under microwave and conventional heating[J]. J. Phys. Chem. C, 2009, 113(48):20553-20558. [27] Ma H J, Xu R S, You W S, et al. Ionothermal synthesis of gallophosphate molecular sieves in 1-alkyl-3-methyl imidazolium bromide ionic liquids[J]. Microporous Mesoporous Mater., 2009, 120(13):278-284. [28] Wei Y, Tian Z J, Gies H, et al. Ionothermal synthesis of an aluminophosphate molecular sieve with 20-ring pore openings[J]. Angew. Chem. Int. Ed., 2010, 49(31):5367-5370. [29] Ng E P, Sekhon S S, Mintova S. Discrete MnAlPO-5 nanocrystals synthesized by an ionothermal approach[J]. Chem. Commun., 2009(13):1661-1663. DOI:10.1039/B820883B. [30] Bieniok A, Brendel U, Sereni P, et al. Raman spectroscopy and crystal structure investigation of solvo- and ionothermally prepared microporous metal-aluminophosphates with the laumontite framework structure[J]. Z. Kristallogr., 2013, 228(8):374-381. [31] Yonemoto B T, Lin Z J, Jiao F. A general synthetic method for MPO4 (M = Co, Fe, Mn) frameworks using deep-eutectic solvents[J]. Chem. Commun., 2012, 48(73):9132-9134. [32] Parnham E R, Morris R E. The ionothermal synthesis of cobalt aluminophosphate zeolite frameworks[J]. J. Am. Chem. Soc., 2006, 128(7):2204-2205. [33] Carvalho M M, Ruotolo L A M, Fernandez-Felisbino R. Synthesis of aluminophosphate by the ionothermal method using factorial design[J]. Microporous Mesoporous Mater., 2013, 165:163-167. [34] Liu L, Li X P, Xu H, et al. Template control in ionothermal synthesis of aluminophosphate microporous materials[J]. Dalton Trans., 2009(47):10418-10421. DOI:10.1039/B820883B. [35] Parnham E R, Morris R E. 1-Alkyl-3-methyl imidazolium bromide ionic liquids in the ionothermal synthesis of aluminium phosphate molecular sieves[J]. Chem. Mater., 2006, 18(20):4882-4887. [36] Pei R Y, Tian Z J, Wei Y, et al. Ionothermal synthesis of AlPO4-34 molecular sieves using heterocyclic aromatic amine as the structure directing agent[J]. Mater. Lett., 2010, 64(21):2384-2387. [37] Liu L, Kong Y, Xu H, et al. Ionothermal synthesis of a three-dimensional zinc phosphate with DFT topology using unstable deep-eutectic solvent as template-delivery agent[J]. Microporous Mesoporous Mater., 2008, 115(3):624-628. [38] Liu L, Wragg D S, Zhang H Y, et al. Ionothermal synthesis, structure and characterization of three-dimensional zinc phosphates[J]. Dalton Trans., 2009(34):6715-6718. DOI:10.1039/b906934h. [39] Fayad E J, Bats N, Kirschhock C E A, et al. A rational approach to the ionothermal synthesis of an AlPO4 molecular sieve with an LTA-type framework[J]. Angew. Chem. Int. Ed., 2010, 49(27):4585-4588. [40] 裴仁彦, 徐云鹏, 魏莹, 等. 有机胺在离子热合成LTA型磷酸铝分子筛中的助模板作用[J]. 催化学报, 2010, 31(8):1083-1089. [41] Zhao X H, Kang C X, Wang H, et al. Ionothermal synthesis of FeAlPO-16 molecular sieve by microwave irradiation in eutectic mixture[J]. J. Porous Mater., 2011, 18(5):615-621. [42] Han L J, Wang Y B, Li C X, et al. Simple and safe synthesis of microporous aluminophosphate molecular sieves by inothermal approach[J]. AIChE J., 2008, 54(1):280-288. [43] Ng E P, Itani L, Sekhon S S, et al. Micro- to macroscopic observations of MnAlPO-5 nanocrystal growth in ionic-liquid media[J]. Chem. Eur. J., 2010, 16(43):12890-12897. [44] Khoo D Y, Kok W M, Mukti R R, et al. Ionothermal approach for synthesizing AlPO-5 with hexagonal thin-plate morphology influenced by various parameters at ambient pressure[J]. Solid State Sci., 2013, 25:63-69. [45] Shi Y W, Liu G Z, Wang L, et al. Ionothermal synthesis of phase pure AlPO4-5 using a series of tri-substituted imidazolium bromides[J]. Microporous Mesoporous Mater., 2014, 193:1-6. [46] Griffin J M, Clark L, Seymour V R, et al. Ionothermal 17O enrichment of oxides using microlitre quantities of labelled water[J]. Chem. Sci., 2012, 3(7):2293-2300. [47] 王少君, 侯蕾, 徐云鹏, 等. 铝源前驱体对离子热法合成磷酸铝分子筛的影响[J]. 过程工程学报, 2008, 8(1):93-96. [48] 裴仁彦. 离子热法合成分子筛结构导向作用的研究[D]. 大连:中国科学院大连化学物理研究所, 2010. [49] Lohmeier S J. Synthese und Charakterisierung von in ionischen Flüssigkeiten hergestellten Aluminiumphosphaten[D]. Hannover:Gottfried Wilhelm Leibniz Universität Hannover, 2011. [50] Li D W, Xu Y P, Wang Y S, et al. Ionothermal syntheses and characterizations of cobalt-substituted extra-large pore aluminophosphate molecular sieves with -CLO topology[J]. Microporous Mesoporous Mater., 2014, 198:153-160. [51] Wang L, Xu Y P, Wang B C, et al. Ionothermal synthesis of magnesium-containing aluminophosphate molecular sieves and their catalytic performance[J]. Chem. Eur. J., 2008, 14(34):10551-10555. [52] Zhao X H, Chen J, Sun Z P, et al. Formation mechanism and catalytic application of hierarchical structured FeAlPO-5 molecular sieve by microwave-assisted ionothermal synthesis[J]. Microporous Mesoporous Mater., 2013, 182:8-15. [53] Zhao X H, Sun Z P, Zhu Z Q, et al. Evaluation of iron-containing aluminophosphate molecular sieve catalysts prepared by different methods for phenol hydroxylation[J]. Catal. Lett., 2013, 143(7):657-665. [54] 马英冲, 徐云鹏, 王少君, 等. 室温离子液体中合成方钠石的研究[J]. 高等学校化学学报, 2006, 27(4):739-741. [55] 马英冲, 王少君, 宋宇, 等. 离子热合成微球方钠石[J]. 无机化学学报, 2010, 26(11):1923-1926. [56] Wheatley P S, Allan P K, Teat S J, et al. Task specific ionic liquids for the ionothermal synthesis of siliceous zeolites[J]. Chem. Sci., 2010, 1(4):483-487. [57] McLeary E E, Jansen J C, Kapteijn F. Zeolite based films, membranes and membrane reactors:Progress and prospects[J]. Microporous Mesoporous Mater., 2006, 90(1-3):198-220. [58] Lew C M, Cai R, Yan Y S. Zeolite thin films:From computer chips to space stations[J]. Acc. Chem. Res., 2009, 43(2):210-219. [59] Gascon J, Kapteijn F, Zornoza B, et al. Practical approach to zeolitic membranes and coatings:State of the art, opportunities, barriers, and future perspectives[J]. Chem. Mater., 2012, 24(15):2829-2844. [60] 李永生, 王金渠, 郭树才. 沸石膜的合成最新进展[J]. 化工进展, 2001, 20(2):42-47. [61] 张延风, 许中强, 陈庆龄. 分子筛膜制备技术[J]. 化工进展, 2002, 21(4):270-274. [62] Cai R, Sun M W, Chen Z W, et al. Ionothermal synthesis of oriented zeolite AEL films and their application as corrosion-resistant coatings[J]. Angew. Chem. Int. Ed., 2008, 47(3):525-528. [63] 田志坚, 厉晓蕾, 李科达, 等. 一种多孔氧化铝载体支撑的ZIF-8膜的制备方法:中国, 201310136268.3[P]. 2014-10-22. [64] Li K D, Tian Z J, Li X L, et al. Ionothermal synthesis of aluminophosphate molecular sieve membranes through substrate surface conversion[J]. Angew. Chem. Int. Ed., 2012, 51(18):4397-4400. [65] 李科达, 厉晓蕾, 王亚松, 等. 离子热法合成AEL磷酸铝分子筛膜及其机理研究[J]. 化学学报, 2013, 71(4):573-578. [66] 李科达. 离子热合成磷酸铝分子筛膜的研究[D]. 大连:中国科学院大连化学物理研究所, 2013. [67] 李激扬, 于吉红, 徐如人. 微孔化合物生成中的结构导向与模板作用[J]. 无机化学学报, 2004, 20(1):1-16. [68] Morris R E, Weigel S J. The synthesis of molecular sieves from non-aqueous solvents[J]. Chem. Soc. Rev., 1997, 26(4):309-317. [69] Corma A, Davis M E. Issues in the synthesis of crystalline molecular sieves:Towards the crystallization of low framework-density structures[J]. Chem. Phys. Chem., 2004, 5(3):304-313. [70] Parnham E R, Morris R E. Ionothermal synthesis using a hydrophobic ionic liquid as solvent in the preparation of a novel aluminophosphate chain structure[J]. J. Mater. Chem., 2006, 16(37):3682-3684. [71] Martineau C, Bouchevreau B, Tian Z J, et al. Beyond the limits of X-ray powder diffraction:Description of the nonperiodic subnetworks in aluminophosphate-cloverite by NMR crystallography[J]. Chem. Mater., 2011, 23(21):4799-4809. [72] Pei R Y, Wei Y, Li K D, et al. Mixed template effect adjusted by amine concentration in ionothermal synthesis of molecular sieves[J]. Dalton Trans., 2010, 39(6):1441-1443. [73] 李臻, 陈静, 夏春谷. 离子液体的工业应用研究进展[J]. 化工进展, 2012, 31(10):2113-2123, 2182. [74] Noack M, Kölsch P, Schäfer R, et al. Molecular sieve membranes for industrial application:Problems, progress, solutions[J]. Chem. Eng. Technol., 2002, 25(3):221-230. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[3] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[4] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
[5] | WANG Darui, SUN Hongmin, XUE Mingwei, WANG Yiyan, LIU Wei, YANG Weimin. Efficient synthesis of fully crystalline ZSM-5 zeolite catalyst by microwave method and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3582-3588. |
[6] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[7] | REN Zhongyuan, HE Jinlong, YUAN Qing. Research progress on intercrystalline defects control and remediation technologies for zeolite membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2454-2463. |
[8] | WU Xia, JIANG Xuntao, ZHANG Yuxiao, LYU Huiyuan, HUANG Fang, YU Xiaoxi. Protein crystallization research based on droplet microfluidics [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2024-2030. |
[9] | NING Shuying, SU Yaxin, YANG Honghai, WEN Nini. Research progress on supported Cu-based zeolite catalysts for the selective catalytic reduction of NO x with hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1308-1320. |
[10] | HUO Wentao, LIU Wen, YU Qiang, AN Jie, ZHU Xiangxue, QIN Yucai, LI Xiujie. Oligomerization of isobutene over MWW zeolite based catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5205-5212. |
[11] | LIU Shulin, YANG Na, ZHANG Longfei, SUN Yongli, JIANG Bin, XIAO Xiaoming, TANTAI Xiaowei, ZHANG Lyuhong. Al-doped Cu/SBA-15 catalysts for the hydrogenation of dimethyl adipate to 1,6-hexanediol [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 289-296. |
[12] | SUN Mengwei, LIU Zhuang, XIE Rui, JU Xiaojie, WANG Wei, CHU Liangyin. Preparation of Lanthanum ion intercalated MoS2 membrane for treating dyeing wastewater with high brine [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 346-353. |
[13] | QI Yabing, JIA Honglei. Progress on separation and purification for organic compounds by melt crystallization [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 373-385. |
[14] | FAN Jiahao, ZHANG Yang, FAN Binqiang, ZHANG Hedong, ZHENG Shili, ZOU Xing. Crystallization kinetics of (NH4)2SO4 in mixed solution of (NH4)2SO4 and Na2SO4 and the influence of Fe/Al/Mn/Cr ions on crystallization [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 488-496. |
[15] | JU Yanan, CHENG Xiangwei, YANG Xiazhen, HUO Chao, LIU Huazhang. Effects of Mg and polyethylene glycol modification of ZSM-5 catalyst on cracking bagasse [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 221-228. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 886
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1574
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |