Chemical Industry and Engineering Progree ›› 2015, Vol. 34 ›› Issue (06): 1511-1518.DOI: 10.16085/j.issn.1000-6613.2015.06.002
Previous Articles Next Articles
ZHENG Lufan, DU Zexue, ZONG Baoning
Received:
2014-12-09
Revised:
2015-01-21
Online:
2015-06-05
Published:
2015-06-05
郑路凡, 杜泽学, 宗保宁
通讯作者:
宗保宁,教授级高级工程师。E-mail:zongbn.ripp@sinopec.com。
作者简介:
郑路凡(1990—),女,博士研究生。E-mail:zhenglufan.ripp@sinopec.com。
CLC Number:
ZHENG Lufan, DU Zexue, ZONG Baoning. Progress of catalytic synthesis of typical 5-hydroxymethyl furfural derivatives[J]. Chemical Industry and Engineering Progree, 2015, 34(06): 1511-1518.
郑路凡, 杜泽学, 宗保宁. 催化合成典型5-羟甲基糠醛衍生物的研究进展[J]. 化工进展, 2015, 34(06): 1511-1518.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2015.06.002
[1] 徐杰, 马继平, 马红. 5-羟甲基糠醛的制备及其催化氧化研究进展[J]. 石油化工, 2013, 41(11):1225-1233. [2] Chheda J N, Huber G W, Dumesic J A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals[J]. Angewandte Chemie International Edition, 2007, 46(38):7164-7183. [3] Moreau C, Finiels A, Vanoye L. Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-h-3-methyl imidazolium chloride acting both as solvent and catalyst[J]. Journal of Molecular Catalysis A:Chemical, 2006, 253(1-2):165-169. [4] Takagaki A, Ohara M, Nishimura S, et al. A one-pot reaction for biorefinery:Combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides[J]. Chemical Communications, 2009(41):6276-6278. [5] 王军, 张春鹏, 欧阳平凯. 5-羟甲基糠醛制备及应用的研究进展[J]. 化工进展, 2008, 27(5):702-707. [6] Hopkins K T, Wilson W D, Bender B C, et al. Extended aromatic furan amidino derivatives as anti-Pneumocystis carinii agents[J]. Journal of Medicinal Chemistry, 1998, 41(20):3872-3878. [7] Sheldon R A. Heterogeneous catalytic oxidation and fine chemicals[J]. Studies in Surface Science and Catalysis, 1991, 59:33-54. [8] Van Deurzen M, Van Rantwijk F, Sheldon R A. Chloroperoxidase- catalyzed oxidation of 5-hydroxymethylfurfural[J]. Journal of Carbohydrate Chemistry, 1997, 16(3):299-309. [9] Cottier L, Descotes G, Lewkowski J, et al. Ultrasonically accelerated syntheses of furan-2, 4-dicarbaldehyde from 5-hydroxymethyl-2- furfural[J]. Organic Preparations and Procedures International, 1995, 27(5):564-566. [10] Amarasekara A S, Green D, Mcmillan E. Efficient oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran using Mn (Ⅲ)-salen catalysts[J]. Catalysis Communications, 2008, 9(2):286-288. [11] Moreau C, Durand R, Pourcheron C, et al. Selective oxidation of 5-hydroxymethylfurfural to 2, 5-furan-dicarboxaldehyde in the presence of titania supported vanadia catalysts[J]. Studies in Surface Science and Catalysis, 1997, 108:399-406. [12] Carlini C, Patrono P, Galletti A M R, et al. Selective oxidation of 5-hydroxymethyl-2-furaldehyde to furan-2, 5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate[J].Applied Catalysis A:General, 2005, 289(2):197-204. [13] Navarro O C, Canós A C, Chornet S I. Chemicals from biomass:Aerobic oxidation of 5-hydroxymethyl-2-furaldehyde into diformylfurane catalyzed by immobilized vanadyl-pyridine complexes on polymeric and organofunctionalized mesoporous supports[J].Topics in Catalysis, 2009, 52(3):304-314. [14] Ma J, Du Z, Xu J, et al. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran, and synthesis of a fluorescent material[J]. Chem. Sus. Chem., 2011, 4(1):51-54. [15] Jia X, Ma J, Wang M, et al. Promoted role of Cu(NO3)2 on aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran over VOSO4[J]. Applied Catalysis A:General, 2014, 482(22):231-236. [16] Partenheimer W, Grushin V V. Synthesis of 2, 5-diformylfuran and furan-2, 5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural:Unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal/bromide catalysts[J]. Advanced Synthesis & Catalysis, 2001, 343(1):102-111. [17] Liu B, Zhang Z, Lv K, et al. Efficient aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2, 5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide[J].Applied Catalysis A:General, 2014, 472:64-71. [18] Yang Z, Deng J, Pan T, et al. A one-pot approach for conversion of fructose to 2, 5-diformylfuran by combination of Fe3O4-SBA-SO3H and K-OMS-2[J]. Green Chemistry, 2012, 14(11):2986-2989. [19] Nie J, Liu H. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran on manganese oxide catalysts[J].Journal of Catalysis, 2014, 316:57-66. [20] Yadav G D, Sharma R V. Biomass derived chemicals:Environmentally benign process for oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran by using nano-fibrous Ag-OMS-2-catalyst[J]. Applied Catalysis B:Environmental, 2014, 147:293-301. [21] Takagaki A, Takahashi M, Nishimura S, et al. One-pot synthesis of 2, 5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts[J]. ACS Catalysis, 2011, 1(11):1562-1565. [22] Antonyraj C A, Jeong J, Kim B, et al. Selective oxidation of HMF to DFF using Ru/γ-alumina catalyst in moderate boiling solvents toward industrial production[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(3):1056-1059. [23] Nie J, Xie J, Liu H. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran on supported Ru catalysts[J]. Journal of Catalysis, 2013, 301:83-91. [24] 刘浪, 杨顺利, 李鸿波, 等. 2, 5-呋喃二甲酸的合成[J]. 精细化工, 2011, 28(4):410-412. [25] Moreau C, Belgacem M N, Gandini A. Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers[J]. Topics in Catalysis, 2004, 27(1-4):11-30. [26] Kakinuma H, Kawano T, Matsuhisa H, et al. Method for producing furan-2, 5-dicarboxylic acid:US, 7411078[P].2008-08-12. [27] Saha B, Dutta S, Abu-Omar M M. Aerobic oxidation of 5-hydroxylmethylfurfural with homogeneous and nanoparticulate catalysts[J].Catalysis Science & Technology, 2012, 2(1):79-81. [28] Koopman F, Wierckx N, de Winde J H, et al. Efficient whole-cell biotransformation of 5-(hydroxymethyl) furfural into FDCA, 2, 5-furandicarboxylic acid[J]. Bioresource Technology, 2010, 101(16):6291-6296. [29] Verdeguer P, Merat N, Gaset A. Oxydation catalytique du HMF en acide 2, 5-furane dicarboxylique[J]. Journal of Molecular Catalysis, 1993, 85(3):327-344. [30] Lilga M A, Hallen R T, Gray M. Production of oxidized derivatives of 5-hydroxymethylfurfural (HMF)[J]. Topics in Catalysis, 2010, 53(15-18):1264-1269. [31] Siankevich S, Savoglidis G, Fei Z, et al. A novel platinum nanocatalyst for the oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid under mild conditions[J]. Journal of Catalysis, 2014, 315:67-74. [32] Haruta M. Chance and necessity:My encounter with gold catalysts[J]. Angewandte Chemie International Edition, 2014, 53(1):52-56. [33] Taarning E, Nielsen I S, Egeblad K, et al. Chemicals from renewables:Aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts[J]. Chem. Sus. Chem., 2008, 1(1-2):75-78. [34] Casanova O, Iborra S, Corma A. Biomass into chemicals:Aerobic oxidation of 5-hydroxymethyl-2-furfural into 2, 5-furandicarboxylic acid with gold nanoparticle catalysts[J]. Chem. Sus. Chem., 2009, 2(12):1138-1144. [35] Pasini T, Piccinini M, Blosi M, et al. Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles[J]. Green Chemistry, 2011, 13(8):2091-2099. [36] Gupta N, Nishimura S, Takagaki A, et al. Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid under atmospheric oxygen pressure[J]. Green Chemistry, 2011, 13(4):824-827. [37] Zope B N, Davis S E, Davis R J. Influence of reaction conditions on diacid formation during Au-catalyzed oxidation of glycerol and hydroxymethylfurfural[J]. Topics in Catalysis, 2012, 55(1-2):24-32. [38] Gorbanev Y Y, Kegnæs S, Riisager A. Effect of support in heterogeneous ruthenium catalysts used for the selective aerobic oxidation of HMF in water[J]. Topics in Catalysis, 2011, 54(16-18):1318-1324. [39] Gorbanev Y Y, Kegnæs S, Riisager A. Selective aerobic oxidation of 5-hydroxymethylfurfural in water over solid ruthenium hydroxide catalysts with magnesium-based supports[J].Catalysis Letters, 2011, 41(12):1752-1760. [40] Wan X, Zhou C, Chen J, et al. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au-Pd alloy nanoparticles[J]. ACS Catalysis, 2014, 4(7):2175-2185. [41] Davis S E, Houk L R, Tamargo E C, et al. Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts[J]. Catalysis Today, 2011, 160(1):55-60. [42] Vinke P, Van der Poel W, Bekkum H. On the oxygen tolerance of noble metal catalysts in liquid phase alcohol oxidations the influence of the support on catalyst deactivation[J]. Studies in Surface Science and Catalysis, 1991, 59:385-394. [43] Gorbanev Y Y, Klitgaard S K, Woodley J M, et al. Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature[J]. Chem. Sus. Chem., 2009, 2(7):672-675. [44] Boussie T R, Dias E L, Fresco Z M, et al. Production of adipic acid and derivatives from carbohydrate-containing materials:US, 8501989[P]. 2013-08-06. [45] Moore J A, Kelly J E. Polyesters derived from furan and tetrahydrofuran nuclei[J]. Macromolecules, 1978, 11(3):568-573. [46] Gomes M, Gandini A, Silvestre A J, et al. Synthesis and characterization of poly(2, 5-furan dicarboxylate)s based on a variety of diols[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2011, 49(17):3759-3768. [47] 姜敏, 周光远, 张强, 等. 直接酯化法合成聚 2, 5-呋喃二甲酸乙二酯[J]. 应用化学, 2012, 29(7):751-756. [48] Figueiredo F, Jordao E, Carvalho W A. Adipic ester hydrogenation catalyzed by platinum supported in alumina, titania and pillared clays[J]. Applied Catalysis A:General, 2008, 351(2):259-266. [49] 程光剑. 新型共聚单体 1, 6-己二醇的开发与应用[J]. 石油科技论坛, 2012, 30(6):58-60. [50] Dias E L, Shoemaker J A, Boussie T R, et al. Process for production of hexamethylenediamine from carbohydrate-containing materials and intermediates therefor:US, 20130184495[P]. 2013-07-18. [51] Tuteja J, Choudhary H, Nishimura S, et al. Direct synthesis of 1, 6-hexanediol from HMF over a heterogeneous Pd/ZrP catalyst using formic acid as hydrogen source[J]. Chem. Sus. Chem., 2014, 7(1):96-100. [52] Waidmann C R, Pierpont A W, Batista E R, et al. Functional group dependence of the acid catalyzed ring opening of biomass derived furan rings:An experimental and theoretical study[J]. Catalysis Science & Technology, 2013, 3(1):106-115. [53] Vries J G, Phua P H, Cabrera I V M, et al. Preparation of caprolactone, caprolactam, 2, 5-tetrahydrofuran-dimethanol, 1, 6-hexanediol or 1, 2, 6-hexanetriol from 5-hydroxymethyl-2- furfuraldehyde:US, 20130137863[P]. 2013-05-30. [54] Nakagawa Y, Tomishige K. Total hydrogenation of furan derivatives over silica-supported Ni-Pd alloy catalyst[J]. Catalysis Communications, 2010, 12(3):154-156. [55] Ohyama J, Esaki A, Yamamoto Y, et al. Selective hydrogenation of 2-hydroxymethyl-5-furfural to 2, 5-bis(hydroxymethyl) furan over gold sub-nano clusters[J]. RSC Advances, 2012, 3(4):1033-1036. [56] Buntara T, Melián-Cabrera I, Tan Q, et al. Catalyst studies on the ring opening of tetrahydrofuran-dimethanol to 1, 2, 6-hexanetriol[J]. Catalysis Today, 2013, 210:106-116. [57] Buntara T, Noel S, Phua P H, et al. From 5-hydroxymethylfurfural (HMF) to polymer precursors:Catalyst screening studies on the conversion of 1, 2, 6-hexanetriol to 1, 6-hexanediol[J]. Topics in Catalysis, 2012, 55(7-10):612-619. [58] Chia M, Pagan-Torres Y J, Hibbitts D, et al. Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts[J]. Journal of the American Chemical Society, 2011, 133(32):12675-12689. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[4] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[5] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[8] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[9] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[10] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[11] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[12] | LEI Wei, JIANG Weijia, WANG Yugao, HE Minghao, SHEN Jun. Synthesis of N,S co-doped coal-based carbon quantum dots by electrochemical oxidation and its application in Fe3+ detection [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4799-4807. |
[13] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[14] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[15] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |