1 |
LEE S C, CHO M S, JUNG S Y, et al. Effects of alumina phases on CO2 sorption and regeneration properties of potassium-based alumina sorbents[J]. Adsorption, 2014, 20(2/3): 331-339.
|
2 |
MEUL S, DAMERIS M, LANGEMATZ U, et al. Impact of rising greenhouse gas concentrations on future tropical ozone and UV exposure[J]. Geophysical Research Letters, 2016, 43(6): 2919-2927.
|
3 |
DOWELL N MAC, FENNELL P S, SHAH N, et al. The role of CO2 capture and utilization in mitigating climate change[J]. Nature Climate Change, 2017, 7(4): 243-249.
|
4 |
GÖTZ M, LEFEBVRE J, MÖRS F, et al. Renewable power-to-gas: a technological and economic review[J]. Renewable Energy, 2016, 85: 1371-1390.
|
5 |
CIMINO S, BOCCIA F, LISI L. Effect of alkali promoters (Li, Na, K) on the performance of Ru/Al2O3 catalysts for CO2 capture and hydrogenation to methane[J]. Journal of CO2 Utilization, 2020, 37: 195-203.
|
6 |
AZIZ M A A, JALIL A A, TRIWAHYONO S, et al. CO2 methanation over heterogeneous catalysts: recent progress and future prospects[J]. Green Chemistry, 2015, 17(5): 2647-2663.
|
7 |
GHAIB K, NITZ K, BEN-FARES F Z. Chemical methanation of CO2: a review[J]. ChemBioEng Reviews, 2016, 3(6): 266-275.
|
8 |
GAO J J, WANG Y L, PING Y, et al. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas[J]. RSC Advances, 2012, 2(6): 2358.
|
9 |
孟凡会, 常慧蓉, 李忠. Ni-Mn/Al2O3催化剂在浆态床中CO甲烷化催化性能[J]. 化工学报, 2014, 65(8): 2997-3003.
|
|
MENG F H, CHANG H R, LI Z. Catalytic performance of Ni-Mn/Al2O3 catalyst for CO methanation in slurry-bed reactor[J]. CIESC Journal, 2014, 65(8): 2997-3003.
|
10 |
GAO J J, LIU Q, GU F N, et al. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. RSC Advances, 2015, 5(29): 22759-22776.
|
11 |
FRONTERA P, MACARIO A, FERRARO M, et al. Supported catalysts for CO2 methanation: a review[J]. Catalysts, 2017, 7(12): 59.
|
12 |
REN J, QIN X, YANG J Z, et al. Methanation of carbon dioxide over Ni-M/ZrO2 (M = Fe, Co, Cu) catalysts: effect of addition of a second metal[J]. Fuel Processing Technology, 2015, 137: 204-211.
|
13 |
ALDANA P A U, OCAMPO F, KOBL K, et al. Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy[J]. Catalysis Today, 2013, 215: 201-207.
|
14 |
WANG S D, PAN Q S, PENG J X, et al. In situ FTIR spectroscopic study of the CO2 methanation mechanism on Ni/Ce0.5Zr0.5O2[J]. Catalysis Science and Technology, 2014, 4(2): 502-509.
|
15 |
WANG W, GONG J L. Methanation of carbon dioxide: an overview[J]. Frontiers of Chemical Science and Engineering, 2011, 5(1): 2-10.
|
16 |
王东旭, 肖显斌, 高静, 等. 助剂钾对镍基催化剂性能影响研究进展[J]. 化工进展, 2014, 33(3): 668-672.
|
|
WANG D X,XIAO X B,GAO J,et al. A review of potassium promoter effect on nickel-based catalyst performance[J]. Chemical Industry and Engineering Progress, 2014, 33(3): 668-672.
|
17 |
OSAKI T, MORI T. Role of potassium in carbon-free CO2 reforming of methane on K-promoted Ni/Al2O3 catalysts[J]. Journal of Catalysis, 2001, 204(1): 89-97.
|
18 |
ANG M L, OEMAR U, SAW E T, et al. Highly active Ni/xNa/CeO2 catalyst for the water-gas shift reaction: effect of sodium on methane suppression[J]. ACS Catalysis, 2014, 4(9): 3237-3248.
|
19 |
XU L L, WANG F G, CHEN M D, et al. Alkaline-promoted Ni based ordered mesoporous catalysts with enhanced low-temperature catalytic activity toward CO2 methanation[J]. RSC Advances, 2017, 7(30): 18199-18210.
|
20 |
TAN J J, WANG J M, ZHANG Z Y, et al. Highly dispersed and stable Ni nanoparticles confined by MgO on ZrO2 for CO2 methanation[J]. Applied Surface Science, 2019, 481: 1538-1548.
|
21 |
GUO M, LU G X. The difference of roles of alkaline-earth metal oxides on silica-supported nickel catalysts for CO2 methanation[J]. RSC Advances, 2014, 4(102): 58171-58177.
|
22 |
YANG W, FENG Y Y, CHU W. Promotion effect of CaO modification on mesoporous Al2O3-supported Ni catalysts for CO2 methanation[J]. International Journal of Chemical Engineering, 2016, 2016: 1-7.
|
23 |
CHENG C B, SHEN D K, XIAO R, et al. Methanation of syngas (H2/CO) over the different Ni-based catalysts[J]. Fuel, 2017, 189: 419-427.
|
24 |
ZHANG L J, BIAN L, ZHU Z T, et al. La-promoted Ni/Mg-Al catalysts with highly enhanced low-temperature CO2 methanation performance[J]. International Journal of Hydrogen Energy, 2018, 43(4): 2197-2206.
|
25 |
BERMEJO-LÓPEZ A, PEREDA-AYO B, GONZÁLEZ-MARCOS J A, et al. Ni loading effects on dual function materials for capture and in situ conversion of CO2 to CH4 using CaO or Na2CO3[J]. Journal of CO2 Utilization, 2019, 34: 576-587.
|
26 |
BERMEJO-LÓPEZ A, PEREDA-AYO B, GONZÁLEZ-MARCOS J A, et al. Mechanism of the CO2 storage and in situ hydrogenation to CH4. Temperature and adsorbent loading effects over Ru-CaO/Al2O3 and Ru-Na2CO3/Al2O3 catalysts[J]. Applied Catalysis B: Environmental, 2019, 256: 117845.
|
27 |
JIMÉNEZ-GONZÁLEZ C, BOUKHA Z, DE RIVAS B, et al. Behavior of coprecipitated NiAl2O4/Al2O3 catalysts for low-temperature methane steam reforming[J]. Energy & Fuels, 2014, 28(11): 7109-7121.
|
28 |
ZHOU L, LI L D, WEI N N, et al. Corrigendum: effect of NiAl2O4 formation on Ni/Al2O3 stability during dry reforming of methane[J]. ChemCatChem, 2015, 7(16): 2406.
|
29 |
ZHAO A M, YING W Y, ZHANG H T, et al. Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation[J]. Catalysis Communications, 2012, 17: 34-38.
|
30 |
HU D C, GAO J J, PING Y, et al. Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production[J]. Industrial & Engineering Chemistry Research, 2012, 51(13): 4875-4886.
|
31 |
CUI D M, LIU J, YU J, et al. Necessity of moderate metal-support interaction in Ni/Al2O3 for syngas methanation at high temperatures[J]. RSC Advances, 2015, 5(14): 10187-10196.
|
32 |
SONG K H, YAN X, KOH D J, et al. La effect on the long-term durability of Ni-Mg-Al2O3 catalysts for syngas methanation[J]. Applied Catalysis A: General, 2017, 530: 184-192.
|
33 |
XU L L, YANG H M, CHEN M D, et al. CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: the promoting effect of basic modifier[J]. Journal of CO2 Utilization, 2017, 21: 200-210.
|
34 |
SONG G, DING Y D, ZHU X, et al. Carbon dioxide adsorption characteristics of synthesized MgO with various porous structures achieved by varying calcination temperature[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470: 39-45.
|
35 |
ASHOK J, KATHIRASER Y, ANG M L, et al. Bi-functional hydrotalcite-derived NiO-CaO-Al2O3 catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions[J]. Applied Catalysis B: Environmental, 2015, 172/173: 116-128.
|
36 |
TAN C, GUO Y F, SUN J, et al. Structurally improved MgO adsorbents derived from magnesium oxalate precursor for enhanced CO2 capture[J]. Fuel, 2020, 278: 118379.
|
37 |
PAN Q S, PENG J X, SUN T J, et al. CO2 methanation on Ni/Ce0.5Zr0.5O2 catalysts for the production of synthetic natural gas[J]. Fuel Processing Technology, 2014, 123: 166-171.
|
38 |
SHOKROLLAHI Y M, RADFARNIA H R, ILIUTA M C. High temperature CO2 sorbents and their application for hydrogen production by sorption enhanced steam reforming process[J]. Chemical Engineering Journal, 2016, 283: 420-444.
|
39 |
ZHOU Z J, SUN N N, WANG B D, et al. 2D-layered Ni-MgO-Al2O3 nanosheets for integrated capture and methanation of CO2[J]. ChemSusChem, 2020, 13(2): 360-368.
|