1 |
余志健, 段伦博, 李小乐, 等. 机械成型水泥支撑钙基吸收剂脱碳活性及强度[J]. 化工进展, 2017, 36(6): 2222-2229.
|
|
YU Zhijian, DUAN Lunbo, LI Xiaole, et al. CO2 capacity and strength of cement-supported Ca-sorbent pelletized by granulator[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2222-2229.
|
2 |
ZHANG S, WANG X, MAO Z Z, et al. Effect of calcination condition on the performance of iron ore in chemical-looping combustion[J]. Fuel Processing Technology, 2020, 203: 106395.
|
3 |
SUN J, YANG Y D, GUO Y F, et al. Stabilized performance of Al-decorated and Al/Mg co-decorated spray-dried CaO-based CO2 sorbents[J]. Chemical Engineering & Technology, 2019, 42(6): 1283-1292.
|
4 |
ARIAS B, CRIADO Y A, ABANADES J C. Thermal integration of a flexible calcium looping CO2 capture system in an existing back-up coal power plant[J]. ACS Omega, 2020, 5(10): 4844-4852.
|
5 |
SUN P, GRACE J R, LIM C J, et al. The effect of CaO sintering on cyclic CO2 capture in energy systems[J]. AIChE Journal, 2007, 53(9): 2432-2442.
|
6 |
GONZÁLEZ B, BLAMEY J, AL-JEBOORI M J, et al. Additive effects of steam addition and HBr doping for CaO-based sorbents for CO2 capture[J]. Chemical Engineering and Processing: Process Intensification, 2016, 103: 21-26.
|
7 |
KARAMI D, MAHINPEY N. Highly active CaO-based sorbents for CO2 capture using the precipitation method: preparation and characterization of the sorbent powder[J]. Industrial & Engineering Chemistry Research, 2012, 51(12): 4567-4572.
|
8 |
CHEN J, DUAN L B, SUN Z K. Review on the development of sorbents for calcium looping[J]. Energy & Fuels, 2020, 34(7): 7806-7836.
|
9 |
孙荣岳, 叶江明, 毕小龙, 等. 丙酸改性提高电石渣捕集CO2性能的动力学分析[J]. 化工进展, 2017, 36(6): 2325-2330.
|
|
SUN Rongyue, YE Jiangming, BI Xiaolong, et al. Kinetic analysis on CO2 capture performance of carbide slag modified by propionic acid[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2325-2330.
|
10 |
SUN J, GUO Y F, YANG Y D, et al. Mode investigation of CO2 sorption enhancement for titanium dioxide-decorated CaO-based pellets[J]. Fuel, 2019, 256: 116009.
|
11 |
NAEEM M A, ARMUTLULU A, IMTIAZ Q, et al. Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO2 sorbents[J]. Nature Communications, 2018, 9: 2408.
|
12 |
ANTZARA A N, ARREGI A, HERACLEOUS E, et al. In-depth evaluation of a ZrO2 promoted CaO-based CO2 sorbent in fluidized bed reactor tests[J]. Chemical Engineering Journal, 2018, 333: 697-711.
|
13 |
VALVERDE J M, PEREJON A, PEREZ-MAQUEDA L A. Enhancement of fast CO2 capture by a nano-SiO2/CaO composite at Ca-looping conditions[J]. Environmental Science & Technology, 2012, 46(11): 6401-6408.
|
14 |
MA X T, LI Y J, ZHANG W, et al. DFT study of CO2 adsorption across a CaO/Ca12Al14O33 sorbent in the presence of H2O under calcium looping conditions[J]. Chemical Engineering Journal, 2019, 370: 10-18.
|
15 |
罗聪, 郑瑛, 吴琪珑, 等. 新型CaO/MgO高温CO2吸收剂的循环反应特性[J]. 工程热物理学报, 2011, 32(11): 1957-1960.
|
|
LUO Cong, ZHENG Ying, WU Qilong, et al. Cyclic reaction characters of novel CaO/MgO high temperature CO2 sorbents[J]. Journal of Engineering Thermophysics, 2011, 32(11): 1957-1960.
|
16 |
PARK J, YI K B. Effects of preparation method on cyclic stability and CO2 absorption capacity of synthetic CaO-MgO absorbent for sorption-enhanced hydrogen production[J]. International Journal of Hydrogen Energy, 2012, 37(1): 95-102.
|
17 |
CHEN H C, ZHANG P P, DUAN Y F, et al. Reactivity enhancement of calcium based sorbents by doped with metal oxides through the sol-gel process[J]. Applied Energy, 2016, 162: 390-400.
|
18 |
WANG K, GU F, CLOUGH P T, et al. Porous MgO-stabilized CaO-based powders/pellets via a citric acid-based carbon template for thermochemical energy storage in concentrated solar power plants[J]. Chemical Engineering Journal, 2020, 390: 124163.
|
19 |
HU Y C, LU H Y, LIU W Q, et al. Incorporation of CaO into inert supports for enhanced CO2 capture: a review[J]. Chemical Engineering Journal, 2020, 396: 125253.
|
20 |
刘长天. 修饰电石渣作为CO2高温载体的循环反应特性研究[D]. 济南: 山东大学, 2014.
|
|
LIU Changtian. Cyclic carbonation characteristics of modified carbide slag as a CO2 sorbent in high temperature[D]. Jinan: Shandong University, 2014.
|
21 |
SALVADOR C, LU D, ANTHONY E J, et al. Enhancement of CaO for CO2 capture in an FBC environment[J]. Chemical Engineering Journal, 2003, 96(1/2/3): 187-195.
|
22 |
SUN P, GRACE J R, LIM C J, et al. Determination of intrinsic rate constants of the CaO-CO2 reaction[J]. Chemical Engineering Science, 2008, 63(1): 47-56.
|
23 |
寇晓晨. 镁基吸附剂的制备及其CO2吸附性能研究[D]. 天津: 天津大学, 2018.
|
|
KOU Xiaochen. Preparation and CO2 capture performance of magnesium based adsorbents[D]. Tianjin: Tianjin University, 2018.
|
24 |
LAN P Q, WU S F. Synthesis of a porous nano-CaO/MgO-based CO2Adsorbent[J]. Chemical Engineering & Technology, 2014, 37(4): 580-586.
|
25 |
ANTZARA A, HERACLEOUS E, LEMONIDOU A A. Development of CaO-based mixed oxides as stable sorbents for post-combustion CO2 capture via carbonate looping[J]. Energy Precedia, 2014, 63: 2160-2169.
|
26 |
YAN X Y, LI Y J, MA X T, et al. CO2 capture by a novel CaO/MgO sorbent fabricated from industrial waste and dolomite under calcium looping conditions[J]. New Journal of Chemistry, 2019, 43(13): 5116-5125.
|