1 |
洪海江, 应振洲, 余锋, 等. 电子级氢氟酸的纯化技术及其配套技术[J]. 有机氟工业, 2012(3): 25-29.
|
|
HONG Haijiang, YING Zhenzhou, YU Feng, et al. Purification technology for electronic-grade hydrofluoric acid and its associated technology[J]. Organic Forine Istry, 2012(3): 25-29.
|
2 |
李丹丹, 岳立平, 郑艺. 无水氟化氢的纯化工艺研究进展[J]. 化学工程师, 2017, 31(9): 36-37, 39.
|
|
LI Dandan, YUE Liping, ZHENG Yi. Advances in purification study of fluoride hydrogen[J]. Chemical Engineer, 2017, 31(9): 36-37, 39.
|
3 |
金正义, 应学来. 含氟化学品生产中过量氟化氢的吸附回收技术[J]. 有机氟工业, 2007(3): 28-29, 33.
|
|
JIN Zhengyi, YING Xuelai. The adsorption and recovery technology of excessive hydrogen fluoride in the production of fluorinated chemicals[J]. Organic Fluorine Industry, 2007(3): 28-29, 33.
|
4 |
刘飞, 邱祖军, 尹峰, 等. 电子级氢氟酸的纯化技术及其发展现状[J]. 硫磷设计与粉体工程, 2012(1): 44-48.
|
|
LIU Fei, QIU Zujun, YIN Feng, et al. Purification technology of electron-grade hydrofluoric acid and its development status[J]. Design and Powder Engineering of Sulfur-Phosphorus, 2012(1): 44-48.
|
5 |
王文利, 白志民. 中国萤石资源及产业发展现状[J]. 金属矿山, 2014(3): 1-9.
|
|
WANG Wenli, BAI Zhimin. Current situation of fluorite resources and industry development in China[J]. Metal Mine, 2014(3): 1-9.
|
6 |
李敬, 高永璋, 张浩. 中国萤石资源现状及可持续发展对策[J]. 中国矿业, 2017, 26(10): 7-14.
|
|
LI Jing, GAO Yongzhang, ZHANG Hao.Current situation and sustainable development countermeasures of fluorite resources in China[J]. China Mining, 2017, 26(10): 7-14.
|
7 |
贾磊. 日本限制对韩氟化氢出口[J]. 无机盐工业, 2019, 51(8): 94.
|
|
JIA L. Restriction of export of hydrogen fluoride to Korea by Japan[J]. Inorfanic Chemicals Industry, 2019, 51(8): 94.
|
8 |
AFZAL S, RAHIMI A, EHSANI M R, et al. Experimental study of hydrogen fluoride adsorption on sodium fluoride[J]. Journal of Industrial & Engineering Chemistry, 2010, 16(1):147-151.
|
9 |
SIAHOOEI M A, BORDBARI K. Adsorption of fluoride gases in aluminum production by using of nanotechnology[M]. Berlin: Springer International Publishing, 2019: 121-136.
|
10 |
WANG C, LIU B, SUN F, et al. New challenge of microporous metal-organic frameworks for adsorption of hydrogen fluoride gas[J]. Materials Letters, 2017, 197: 175-179.
|
11 |
BAHRAMI H, SAFDARI J, MOOSAVIAN M A, et al. Adsorption of hydrogen fluoride onto activated carbon under vacuum conditions: equilibrium, kinetic and thermodynamic investigations[J]. Chemical Industry and Chemical Engineering Quarterly, 2012, 18(4): 497-508.
|
12 |
CASTILLO J M, VLUGT T J H, CALERO, et al. Understanding water adsorption in Cu-BTC Metal-Organic frameworks[J]. Journal of Physical Chemistry C, 2008, 112(41): 15934-15939.
|
13 |
PARTAY L B, JEDLOVSZKY P, HOANG P N M, et al. Free-energy profile of small solute molecules at the free surfaces of water and ice, as determined by cavity insertion widom calculations[J]. Journal of Physical Chemistry C, 2007, 111(26): 9407-9416.
|
14 |
ZHAO R, ZHAO L, DENG S, et al. A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle[J]. Energy, 2017, 137: 495-509.
|
15 |
DU Z, NIE X, DENG S, et al. Comparative analysis of calculation method of adsorption isosteric heat: case study of CO2 capture using MOFs[J]. Microporous and Mesoporous Materials, 2020, 298: 110053.
|
16 |
MAX, HEFTI, DORIAN, et al. Adsorption equilibrium of binary mixtures of carbon dioxide and nitrogen on zeolites ZSM-5 and 13X[J]. Microporous and Mesoporous Materials, 2015, 215: 215-288.
|
17 |
JIANG L, ROSKILLY A P, WANG R Z. Performance exploration of temperature swing adsorption technology for carbon dioxide capture[J]. Energy Conversion & Management, 2018, 165: 396-404.
|
18 |
KIM Min-Bae, MOON Jong-Ho, LEE Chang-Ha, et al. Effect of heat transfer on the transient dynamics of temperature swing adsorption process[J]. Korean Journal of Chemical Engineering, 2004, 21(3): 73-711.
|
19 |
JOSS L, GAZZANI M, HEFTI M, et al. Temperature swing adsorption for the recovery of the heavy component: an equilibrium-based shortcut model[J]. Industrial & Engineering Chemistry Research, 2015, 54(11): 3027-3038.
|
20 |
ZHAO R, DENG S, LIU Y, et al. Carbon pump: fundamental theory and applications[J]. Energy, 2017, 119:1131-1143.
|
21 |
KLOUTSE F A, ZACHARIA R, COSSEMENT D, et al. Specific heat capacities of MOF-5, Cu-BTC, Fe-BTC, MOF-177 and MIL-53 (Al) over wide temperature ranges: measurements and application of empirical group contribution method[J]. Microporous and Mesoporous Materials, 2015, 217: 1-5.
|