化工进展 ›› 2021, Vol. 40 ›› Issue (4): 2161-2174.DOI: 10.16085/j.issn.1000-6613.2020-2586
黄国勇1(), 李毅1(), 屈辰玮1, 孙晓华1, 李勃天1, 戈磊1, 叶海木1(), 张红梅2()
收稿日期:
2020-12-30
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
叶海木,张红梅
作者简介:
黄国勇(1984—),男,博士,教授,研究方向为新能源材料。E-mail:基金资助:
HUANG Guoyong1(), LI Yi1(), QU Chenwei1, SUN Xiaohua1, LI Botian1, GE Lei1, YE Haimu1(), ZHANG Hongmei2()
Received:
2020-12-30
Online:
2021-04-05
Published:
2021-04-14
Contact:
YE Haimu,ZHANG Hongmei
摘要:
过渡金属二硫化物具有较高的理论比容量、稳定的电化学性能及成熟的制备工艺,是锂系热电池中应用最广的正极材料之一,但其同时也存在电极电位低、大功率放电能力弱等问题,致使其进一步的发展受到限制。目前,对于过渡金属二硫化物正极材料的优化及改性是锂系热电池领域的核心课题。本文综述了FeS2、CoS2与NiS2等过渡金属二硫化物在放电机理、制备工艺及电化学性能方面的研究现状,介绍了双金属二硫化物及过渡金属二硫化物/碳素类复合材料的主要研究进展。同时,通过对现有研究的归纳与总结,指出了掣肘过渡金属二硫化物正极材料发展的关键问题,简述了针对过渡金属二硫化物的主要改性手段,并对其之后的研究提出了一些建议与想法。
中图分类号:
黄国勇, 李毅, 屈辰玮, 孙晓华, 李勃天, 戈磊, 叶海木, 张红梅. 热电池用过渡金属二硫化物及其复合材料的研究进展[J]. 化工进展, 2021, 40(4): 2161-2174.
HUANG Guoyong, LI Yi, QU Chenwei, SUN Xiaohua, LI Botian, GE Lei, YE Haimu, ZHANG Hongmei. Recent development of transition metal disulfides and their composites for thermal batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2161-2174.
1 | GUIDOTTI R A, MASSET P. Thermally activated (“thermal”) battery technology: Part Ⅰ: An overview[J]. Journal of Power Sources, 2006, 161(2): 1443-1449. |
2 | FREITAS G C S, PEIXOTO F C, VIANNA A S. Simulation of a thermal battery using Phoenics®[J]. Journal of Power Sources, 2008, 179(1): 424-429. |
3 | KANG Bo, ZHANG Wenli, LIN Haibo, et al. Thermal transfer during the activation process in LiSi/FeS2 thermal batteries[J]. Chemical Research in Chinese Universities, 2016, 32: 665-668. |
4 | MALLOW A, ABDELAZIZ O, GRAHAM S. Thermal charging performance of enhanced phase change material composites for thermal battery design[J]. International Journal of Thermal Sciences, 2018, 127: 19-28. |
5 | WANG Lingshi, LIU Xiaobing, YANG Zhiyao, et al. Experimental study on a novel three-phase absorption thermal battery with high energy density applied to buildings[J]. Energy, 2020, 208: 118311. |
6 | MASSET P J, GUIDOTTI R A. Thermal activated (“thermal”) battery technology—Part Ⅲa: FeS2 cathode material[J]. Journal of Power Sources, 2008, 177: 595-609. |
7 | GIAGLOGLOU K, PAYNE J L, CROUCH C, et al. Synthesis and electrochemical study of CoNi2S4 as a novel cathode material in a primary Li thermal battery[J]. Journal of the Electrochemical Society, 2017, 164(9): A2159. |
8 | GAO Junkui, HUANG Laihe. Research and prospect of modern thermal battery electrode materials[J]. Chinese Journal of Power Sources, 2000, 24(138): 370-373. |
9 | DE GUIBERT A, CREPY G, BUCHEL J, et al. Thermal battery based on a new, high-voltage cathodic material[C]//Proceedings of the 34th International Power Sources Symposium, 1990: 145-147. |
10 | LUO Zeshunji, FU Licai, ZHU Jiajun, et al. Cu2O as a promising cathode with high specific capacity for thermal battery[J]. Journal of Power Sources, 2020, 448: 227569. |
11 | MASSET P J, GUIDOTTI R A. Thermal activated (“thermal”) battery technology: Part Ⅲb. Sulfur and oxide-based cathode materials[J]. Journal of Power Sources, 2008, 178(1): 456-466. |
12 | LIAO Zheng, FU Licai, ZHU Jiajun, et al. Excellent electrochemical performance of flexible NiO thin film as thermal battery cathode[J]. Materials Letters, 2020, 280: 128592. |
13 | WANG Yan, BAI Xintao, LUO Zeshunji, et al. High specific energy of CuO as a thermal battery cathode[J]. International Journal of Electrochemical Science, 2020, 15: 10406-10411. |
14 | HUANG Guoyong, YANG Yue, SUN Hongyu, et al. Defective ZnCo2O4 with Zn vacancies: synthesis, property and electrochemical application[J]. Journal of Alloys and Compounds, 2017, 724: 1149-1156. |
15 | HUANG Guoyong, GUO Xueyi, CAO Xiao, et al. 3D network single-phase Ni0.9Zn0.1O as anode materials for lithium-ion batteries[J]. Nano Energy, 2016, 28: 338-345. |
16 | ZHEN Lichun, TAO Baixin, WEI Wanghe, et al. Research of oxides cathode material for thermal battery[J]. Chinese Journal of Power Sources, 2019, 43(6): 1067-1069. |
17 | VOLKOVA O V, ZAKHAROV V V, REZNITSKIKH O G. A study of CrCl3 cathode for thermal batteries chromium(Ⅲ) chloride as a promising cathode material for thermal batteries[J]. Rasplavy, 2017, 1(4): 294-301. |
18 | JIN Chuanyu, ZHOU Lingping, FU Licai, et al. Synthesis and discharge performances of NiCl2 by surface modification of carbon coating as cathode material of thermal battery[J]. Applied Surface Science, 2017, 402: 308-313. |
19 | GIAGLOGLOU K, PAYNE J L, CROUCH C, et al. Transition metal chlorides NiCl2, KNiCl3, Li6VCl8 and Li2MnCl4 as alternative cathode materials in primary Li thermal batteries[J]. Journal of the Electrochemical Society, 2018, 165(14): A3510. |
20 | LIU Wenjun, LIU Haiping, BI Sifu, et al. Variable-temperature preparation and performance of NiCl2 as a cathode material for thermal batteries[J]. Science China Materials, 2017, 60(3): 251-257. |
21 | CHANG Qing, LUO Zeshunji, FU Licai, et al. A new cathode material of NiF2 for thermal batteries with high specific power[J]. Electrochimica Acta, 2020, 361: 137051. |
22 | GUO Shengnan, GUO Hao, WANG Xueying, et al. Iron trifluoride as a high voltage cathode material for thermal batteries[J]. Journal of the Electrochemical Society, 2019, 166(15): A3599. |
23 | BRISCOE J D. Fluoride based cathodes and electrolytes for high energy thermal batteries[C]//Proceedings of the 33th Intersociety Energy Conversion Engineering Conference, 1998. |
24 | SUTULA R A. Electrochemical cell for thermal batteries having transition metal fluoride cathode with metal and an alkali metal fluoride electrolyte: US3591418A[P]. 1971-07-06. |
25 | RAJU G S R, PAVITRA E, NAGARAJU G, et al. Rational design of forest-like nickel sulfide hierarchical architectures with ultrahigh areal capacity as a binder-free cathode material for hybrid supercapacitors[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6: 13178. |
26 | YANG Shurui, RAN Yan, WU Huimin, et al. Hydrothermal synthesis of copper sulfide flowers and nanorods for lithium-ion battery applications[J]. Journal of Nanoscience and Nanotechnology, 2018, 2: 1-9. |
27 | ZHANG Wen, YAN Xiaoyan, TONG Xili, et al. Synthesis of nickel sulfide monolayer hollow spheres arrays as cathode materials for alkaline batteries[J]. Materials Letters, 2016, 178: 120-123. |
28 | ZHU Lingzhi, HAN Enshan, CAO Jilin. Synthesis and characteristics of NiS for cathode of lithium ion batteries[J]. Advanced Materials Research, 2011, 236: 694-697. |
29 | KIM I Y, WOO S P, KO J, et al. Binder-free cathode for thermal batteries fabricated using FeS2 treated metal foam[J]. Frontiers in Chemistry, 2019, 7: 1-8. |
30 | LEE J M, IM C N, YOON H K, et al. Effect of cathode materials (MS2, M=Fe,Ni,Co) on electrochemical properties of thermal batteries[J]. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2017, 30: 583-588. |
31 | PAYNE J L, GIAGLOGLOU K, CARINS G M, et al. In-situ studies of high temperature thermal batteries: a perspective[J]. Frontiers in Energy Research, 2018, 6: 1-6. |
32 | WANG Chao, NIU Yi, JIANG Jing, et al. Hybrid thermoelectric battery electrode FeS2 study[J]. Nano Energy, 2018, 45: 432-438. |
33 | FENG Junkai, HUANG Jie, LI Hongyi, et al. Novel VS4 nanorods synthesized by a facile solvothermal method for high performance electrochemical capacitor electrode[C]//TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings, 2020, 1529-1537. |
34 | LI Hucheng, YANG Huicong, SUN Zhenhua, et al. A highly reversible Co3S4 microsphere cathode material for aluminum-ion batteries[J]. Nano Energy, 2019, 56: 100-108. |
35 | LI Zhenjiang, DING Shiqi, YIN Jifang, et al. Morphology-dependent electrochemical performance of VS4 for rechargeable magnesium battery and its magnesiation/demagnesiation mechanism[J]. Journal of Power Sources, 2020, 451: 227815. |
36 | KANG S H, LEE J, HUR T U, et al. Heat treatment effect on microstrain and electrochemical performance of nano-sized FeS2 cathode for thermal batteries[J]. International Journal of Electrochemical Science, 2016, 11(6): 4371-4379. |
37 | PAYNE J L, PERCIVAL J D, GIAGLOGLOU K, et al. In-situ thermal battery discharge using NiS2 as a cathode material[J]. Chemelectrochem, 2017, 4(8): 1-9. |
38 | KO J, KANG S H, CHEONG H W, et al. Recent progress in cathode materials for thermal batteries[J]. Journal of the Korean Ceramic Society, 2019, 56(3): 233-255. |
39 | SCHNEIDER A A, BOWSER G C. Thermal battery having iron pyrite depolarizer: US4119769A[P]. 1978-10-10. |
40 | TOMCZUK Z, TANI B, OTTO N C, et al. Phase relationships in positive electrodes of high temperature Li‐Al/LiCl‐KCl/FeS2 cells[J]. Journal of the Electrochemical Society, 1982, 129(5): 925. |
41 | 种晋, 董静, 张霣霞, 等. 两种常用电解质体系的LiB/FeS2电池性能的差异及其影响机理的的差异及其影响机理的研究[J]. 中国电子科学研究院学报, 2007, 2(4): 365-370. |
ZHONG Jin, DONG Jing, ZHANG Yunxia, et al. Performance differences of LiB/FeS2 thermal batteries with two popular electrolyte systems & relative mechanism analysis[J]. Journal of China Academy of Elecronics and Information Technology, 2007, 2(4): 365-370. | |
42 | BIRT D, FELTHAM C, HAZZARD G. Characteristics of the aluminium lithium/iron sulfide cells in immobilized salt electrolytes[C]//Proceedings of the 28th International Power Sources Symposium, 1978: 14-16. |
43 | DALLEK S, MURPHY T C, NGUYEN T. Evaluation of transion mental sulfide cathode materials for thermal batteries[C]//Proceedings of the 36th International Power Sources Symposium, 1994: 329-332. |
44 | 胡静. 热电池新型正极材料的制备与薄膜化工艺的研究[D]. 北京: 中国科学院大学, 2019. |
HU Jing. Synthesis of new cathode materials and study on thin-film technology for thermal batery[D]. Beijing: Universal of China Academia of Sciences, 2019. | |
45 | PRIMO E N, BRACAMONTE M V, LUQUE G L, et al. Mechanochemically synthesized pyrite and its electrochemical behavior as cathode for lithium batteries[J]. Journal of Solid State Electrochemistry, 2019, 23(6): 1929-1938. |
46 | CHIN P P, DING J, YI J B, et al. Synthesis of FeS2 and FeS nanoparticles by high energy mechanical milling and mechanochemical processing[J]. Journal of Alloys and Compounds, 2005, 390: 255-260. |
47 | ZENG Wenhao, CHEN Zhenhao, LIU Xinyue, et al. Hydrothermal synthesis of FeS2 cathode material for Li/FeS2 battery[J]. Battery, 2015, 45(2): 71-73. |
48 | YANG Zhaotang, LIU Xiaojiang, FENG Xiuli, et al. Hydrothermal synthesized micro/nano-sized pyrite used as cathode material to improve the electrochemical performance of thermal battery[J]. Journal of Applied Electrochemistry, 2014, 44: 1075-1080. |
49 | SOUMITRA K, SUBHADRA C. Solvothermal synthesis of nanocrystalline FeS2 with different morphologies[J]. Chemical Physics Letters, 2004, 398: 22-26. |
50 | LIAO Hantao, WANG Yourong, WANG Jia, et al. Synthesis of macroporous FeS2 nanotubes and their electrochemical properties[J]. Advanced Materials Research, 2013, 774: 677-681. |
51 | HAN Yu, HUANG Guoyong, XU Shengming. Structural reorganization-based nanomaterials as anodes for lithium-ion batteries: design, preparation, and performance[J]. Small, 2020, 16(15): 1902841. |
52 | XIAO Suo, LI Xiaopeng, SUN Weiwei, et al. General and facile synthesis of metal sulfide nanostructures: in situ microwave synthesis and application as binder-free cathode for Li-ion batteries[J]. Chemical Engineering Journal, 2016, 68: 1-28. |
53 | WEI D, OSSEO A K. Aqueous synthesis of finely divided pyrite particles[J]. Colloids and Surfaces, A: Physicochemical and Engineering Aspect, 1997, 121: 27-36. |
54 | HENRíQUEZ R, VáSQUEZ C, BRIONES N, et al. Single phase FeS2 (pyrite) thin films prepared by combined electrodeposition and hydrothermal low temperature techniques[J]. International Journal of Electrochemical Science, 2016, 11: 4966-4978. |
55 | HENRíQUEZ R, VáSQUEZ C, MUñOZ E, et al. Phase-pure iron pyrite (FeS2) micro- and nano-sized crystals synthesized by simple one-step microwave-assisted hydrothermal method[J]. Physica E: Low-dimensional Systems and Nanostructures, 2020, 118: 113881. |
56 | HUANG Haiyan, GAO Junli, ZHANG Liping, et al. A study of the CoS2 cathode for thermal batteries[J]. ECS Transactions, 2011, 35(32): 295. |
57 | MASSET P J, GUIDOTTI R A. Thermal activated (“thermal”) battery technology: Part Ⅲb. Sulfur and oxide-based cathode materials[J]. Journal of Power Sources, 2008, 178: 456-466. |
58 | PAYNE J L, PERCIVAL J D, GIAGLOGLOU K, et al. In situ thermal battery discharge using CoS2 as a cathode material[J]. Journal of the Electrochemical Society, 2019, 166(12): A2660-A2664. |
59 | GUIDOTTI R A, NIGREY P J, REINHARDT F W. Preparation and characterization of synthetic CoS2 for use in thermal battery[C]//Proceedings of the 41th International Power Sources Symposium, 2004: 149-152. |
60 | WU Peili. Preparation and performance test of cobalt disulfide for high power thermal battery[J]. Modern Chemical Research, 2017, 12(12): 126-127. |
61 | QIN Wei, HU Baoguo, BAO Di, et al. The preparation of Co9S8 and CoS2 nanoparticles by a high energy ball-milling method and their electrochemical hydrogen storage properties[J]. International Journal of Hydrogen Energy, 2014, 39(17): 9300-9306. |
62 | 杨潇薇, 刘波, 李科, 等. 热电池用CoS2正极材料水热合成及其性能研究[J]. 人工晶体学报, 2018, 47(3): 623-634. |
YANG Xiaowei, LIU Bo, LI Ke, et al. Hydrothermal synthesis and properties of CoS2 cathode materials for thermal batteries[J]. Journal of Synthetic Crystals, 2018, 47(3): 623-634. | |
63 | HU Q R, WANG S L, ZHANG Y, et al. Synthesis of cobalt sulfide nanostructures by a facile solvothermal growth process[J]. Journal of Alloys and Compounds, 2010, 491(1/2): 707-711. |
64 | 魏明炜, 马伟民, 闻雷, 等. CoS2正极材料制备及电化学性能[J]. 人工晶体学报, 2015, 44(8): 2211-2230. |
WEI Mingwei, MA Weimin, WEN Lei, et al. Preparation and electrochemical properties of CoS2 cathode materials[J]. Journal of Synthetic Crystals, 2015, 44(8): 2211-2230. | |
65 | WU Kui, WANG Weiyan, GUO Xuanlin, et al. Facile and fast template-free synthesis of octahedron and hollow sphere CoS2 by microwave-assisted hydrothermal method[J]. Results in Physics, 2017, 7: 1683-1688. |
66 | GUIDOTTI R A, REINHARDT F W, DAI J, et al. Performance of thermal cells and batteries made with plasma-sprayed cathodes and anodes[J]. Journal of Power Sources, 2006, 160(2): 1456-1464. |
67 | PRETO S K, TOMCZUK Z, WINBUSH S V, et al. Reactions of FeS2, CoS2, and NiS2 electrodes in molten LiCl-KCl electrolytes[J]. Journal of the Electrochemical Society, 1983, 130(2): 264-273. |
68 | JIN Chuanyu, ZHOU Lingping, FU Licai, et al. The acceleration intermediate phase (NiS and Ni3S2) evolution by nanocrystallization in Li/NiS2 thermal batteries with high specific capacity[J]. Journal of Power Sources, 2017, 352(111): 83-89. |
69 | 谌冰, 冉光旭, 乐松. NiS2的固态杂化微波合成研究[J]. 人工晶体学报, 2014, 43(2): 450-453. |
CHEN Bin, RAN Guangxu, YUE Song. Synthesis of NiS2 by solid state hybrid microwave method[J]. Journal of Synthetic Crystals, 2014, 43(2): 450-453. | |
70 | 金传玉. 热电池镍系正极材料的研究[D]. 长沙: 湖南大学, 2017. |
JIN Chuanyu. The reasearch on nickel-containing cathode materials in thermal batteries[D]. Changsha: Hunan University, 2017. | |
71 | YANG Zhaotang, LIU Xiaojiang. Hydrothermal synthesis of nickel disulfide and its application in thermal battery[J]. ECS Transactions, 2014, 59: 67-72. |
72 | 林保山, 曹晓晖, 杨少华, 等. 热电池用NiS2的水热合成及放电性能[J]. 沈阳理工大学学报, 2014, 33(2): 26-30. |
LIN Baoshan, CAO Xiaohui, YANG Shaohua, et al. Hydrothermal synthesis and discharge performance of NiS2 used for thermal battery[J]. Journal of Shenyang Ligong University, 2014, 33(2): 26-30. | |
73 | YANG Shiliu, YAO Hongbin, GAO Minrui, et al. Monodisperse cubic pyrite NiS2 dodecahedrons and microspheres synthesized by a solvothermal process in a mixed solvent: thermal stability and magnetic properties[J]. CrystEngComm, 2009, 11(7): 1383-1390. |
74 | HUANG Siyu, LIU Xinyu, LI Qingyu, et al. Nickel disulfide films synthesized by sulfidation of nickel oxide film[J]. Solid State Sciences, 2011, 13(7): 1375-1378. |
75 | GUO Zheng, WANG Xinwei. Atomic layer deposition of the metal pyrites FeS2, CoS2, and NiS2[J]. Angewandte Chemie: International Edition, 2018, 57(20): 5898-5902. |
76 | ZHENG Xiaodi, ZHU Yanli, SUN Yalun, et al. Hydrothermal synthesis of MoS2 with different morphology and its performance in thermal battery[J]. Journal of Power Sources, 2018, 395: 318-327. |
77 | GUO Shengnan, GUO Hao, WANG Xueying, et al. Synthesis and electrochemical performance of WS2 nanosheet for thermal batteries[J]. Materials Letters, 2019, 23: 81-83. |
78 | HUANG Guoyong, XU Shengming, YANG Yue, et al. Preparation of cobalt-based Bi-metal-oxides and the application in the field of electrochemical energy storage[J]. Chinese Journal of Inorganic Chemistry, 2016, 32(10): 1693-1703. |
79 | CHENG Wanwan, ZHAO Ping, YANG Shaohua, et al. Discharge performance study of Fe1-xCoxS2 cathode material for thermal batteries[J]. Chinese Journal of Power Sources, 2016, 40(11): 2192-2194. |
80 | 黄国勇, 郭学益, 肖猷魏, 等. 一种热电池用单相正极材料及其制备方法、应用: CN201810710075[P]. 2019-08-09. |
HUANG Guoyong, GUO Xueyi, XIAO Youwei, et al. A kind of single-phase cathode material for thermal battery and its preparation method and application: CN201810710075[P]. 2019-08-09. | |
81 | ZHANG Kai, PARK M H, ZHOU Limin, et al. Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries[J]. Angewandte Chemie: International Edition, 2016, 55(41): 12822-12826. |
82 | HU Jing, ZHAO Lili, CHU Ying, et al. Preparation and electrochemical properties of a new Fe0.5Co0.5S2 cathode material for thermal batteries[J]. Journal of Alloys and Compounds, 2018, 762: 109-114. |
83 | 杨坤坤, 赵平, 杨少华, 等. NixCo1-xS2的水热法制备及热电池放电性能[J]. 高等学校化学学报, 2016, 37(8): 1491-1498. |
YANG Kunkun, ZHAO Ping, YANG Shaohua, et al. Hydrothermal synthesis of NixCo1-xS2 and its discharge performance in thermal batteries[J]. Chemical Journal of Chinese Universities, 2016, 37(8): 1491-1498. | |
84 | HE Yanxiang, CAO Lixin, YUAN Guangming, et al. Hydrothermally synthesized bimetallic disulfide CoxNi1-xS2 as high-performance cathode material for lithium thermal battery[J]. Ionics, 2020, 26: 4985-4991. |
85 | YU Tianlang, YU Zhiyong, CAO Yong, et al. Electrochemical performances and air stability of Fe-doped CoS2 cathode materials for thermal batteries[J]. International Journal of Electrochemical Science, 2018, 13: 7590-7597. |
86 | ZHANG Qiang, HUANG Ning, HUANG Zhen, et al. CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life[J]. Journal of Energy Chemistry, 2020, 40: 151-155. |
87 | ZHANG Kaiqiang, LEE T H, CHA J H, et al. Properties of CoS2/CNT as a cathode material of rechargeable aluminum-ion batteries[J]. Electronic Materials Letters, 2019, 15: 727-732. |
88 | LU Yi, YANG Fan, WANG G G X, et al. Recent development of graphene-based materials for cathode application in lithium batteries: a review and outlook[J]. International Journal of Electrochemical Science, 2019, 14: 5961-5971. |
89 | YOU Yu, YE Yangwei, WEI Mengli, et al. Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries[J]. Chemical Engineering Journal, 2019, 355: 671-678. |
90 | MUJTABA J, SUN H Y, HUANG G Y, et al. Co9S8 nanoparticles encapsulated in nitrogen-doped mesoporous carbon networks with improved lithium storage properties[J]. RSC Advances, 2016, 6(38): 31775-31781. |
91 | CHOI Y, CHO S, LEE Y S. Effect of the addition of carbon black and carbon nanotube to FeS2 cathode on the electrochemical performance of thermal battery[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3584-3589. |
92 | KO J, KIM I Y, CHEONG H, et al. Organic binder-free cathode using FeS2-MWCNTs composite for thermal batteries[J]. Journal of the American Ceramic Society, 2017, 100(10): 4435-4441. |
93 | WANG Jingliang, MI Lin. Preparation of nanocomposites FeS2/RGO and discharge performance of thermal batteries[J]. Modern Chemical Research, 2018, 1(6): 168-169. |
94 | 杨坤坤. 过渡金属硫化物/石墨烯复合正极材料的制备及应用研究[D]. 沈阳: 沈阳理工大学, 2017. |
YANG Kunkun. Study on preparationand application of transition metal sulfide/graphene composite cathode materials[D]. Shenyang: Shenyang Ligong University, 2017. | |
95 | XIE Youlong, LIU Zhijian, NING Huilong, et al. Suppressing self-discharge of Li-B/CoS2 thermal batteries by using a carbon-coated CoS2 cathode[J]. RSC Advances, 2018, 8: 7173-7178. |
96 | 巴忠菊, 杨少华, 曹晓晖, 等. 碳化CoS2电极材料的制备及放电性能[J]. 机械工程材料, 2016, 40(2): 76-78. |
BA Zhongju, YANG Shaohua, CAO Xiaohui, et al. Preparation and discharge performance of carbonized cobalt discovery electrode material[J]. Materials for Mechical Engineering, 2016, 40(2): 76-78. | |
97 | XIE Song, DENG Yafeng, MEI Jun, et al. Carbon coated CoS2 thermal battery electrode material with enhanced discharge performances and air stability[J]. Electrochimica Acta, 2017, 231: 287-293. |
98 | XIE Song, DENG Yafeng, MEI Jun, et al. Facile synthesis of CoS2/CNTs composite and its exploitation in thermal battery fabrication[J]. Composites Part B: Engineering, 2016, 93: 203-209. |
99 | JIN Chuanyu, FU Licai, ZHU Jiajun, et al. A hierarchical carbon modified nano-NiS2 cathode with high thermal stability for a high energy thermal battery[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(16): 7123-7132. |
100 | JIN Chuanyu, SONG Kaixu, LIU Jiaqi, et al. Flexible, self-assembly NiS2/C thin film cathodes for long life thermal battery[J]. Journal of Alloys and Compounds, 2020, 833: 155091. |
101 | JIN Chuanyu, FU Licai, GE Bo, et al. The NiCl2/NiS2@C double active composite cathodes with surface synergistic effects for high-power thermal battery[J]. Journal of Alloys and Compounds, 2019, 800: 518-524. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[3] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[4] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[5] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[6] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[7] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[8] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[9] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[10] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[11] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[12] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[13] | 陈俊俊, 费昌恩, 段金汤, 顾雪萍, 冯连芳, 张才亮. 高生物活性聚醚醚酮化学改性研究进展[J]. 化工进展, 2023, 42(8): 4015-4028. |
[14] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
[15] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |