1 | FITCHETT D E, TARBELL J M. Effect of mixing on the precipitation of barium sulfate in an MSMPR reactorssss[J]. AIChE Journal, 1990, 36(4): 511-522. | 2 | CHARMOLUE H, ROUSSEAU R W. L-serine obtained by methanol addition in batch crystallization[J]. AIChE Journal, 1991, 37(8): 1121-1128. | 3 | PHILLIPS R, ROHANI S, BALDYGA J. Micromixing in a single-feed semi-batch precipitation process[J]. AIChE Journal, 1999, 45(1): 82-92. | 4 | TORBACKE M, RASMUSON ? C. Mesomixing in semi-batch reaction crystallization and influence of reactor size[J]. AIChE Journal, 2004, 50(12): 3107-3119. | 5 | RAMISETTY K A, PANDIT A B, GOGATE P R. Ultrasound-assisted antisolvent crystallization of benzoic acid: Effect of process variables supported by theoretical simulations[J]. Industrial & Engineering Chemistry Research, 2013, 52(49): 17573-17582. | 6 | GRADOV D V, GONZáLEZ G, VAUHKONEN M, et al. Experimental investigation of reagent feeding point location in a semi-batch precipitation process[J]. Chemical Engineering Science, 2018, 190: 361-369. | 7 | DAVID R, MARCANT B. Prediction of micromixing effects in precipitation: Case of double-jet precipitators[J]. AIChE Journal, 1994, 40(3): 424-432. | 8 | HOUCINE I, PLASARI E, DAVID R, et al. Influence of mixing characteristics on the quality and size of precipitated calcium oxalate in a pilot scale reactor[J]. Chemical Engineering Research and Design, 1997, 75(2): 252-256. | 9 | QU H Y, ALATALO H, HATAKKA H, et al. Raman and ATR FTIR spectroscopy in reactive crystallization: Simultaneous monitoring of solute concentration and polymorphic state of the crystals[J]. Journal of Crystal Growth, 2009, 311(13): 3466-3475. | 10 | E W W, CHENG J C, YANG C, et al. Experimental study by online measurement of the precipitation of nickel hydroxide: Effects of operating conditions[J]. Chinese Journal of Chemical Engineering, 2015, 23(5): 860-867. | 11 | REHAGE H, NIKQ F, KIND M. Experimental investigation of a two-zone model for semi-batch precipitation in stirred-tank reactors[J]. Chemical Engineering Science, 2019, 207: 258-270. | 12 | MUHR H, DAVID R, VILLERMAUX J, et al. Crystallization and precipitation engineering—Ⅴ. Simulation of the precipitation of silver bromide octahedral crystals in a double-jet semi-batch reactor[J]. Chemical Engineering Science, 1995, 50(2): 345-355. | 13 | ZAUNER R, JONES A G. Scale-up of continuous and semibatch precipitation processes[J]. Industrial & Engineering Chemistry Research, 2000, 39(7): 2392-2403. | 14 | YU Z Q, TAN R B H, CHOW P S. Effects of operating conditions on agglomeration and habit of paracetamol crystals in anti-solvent crystallization[J]. Journal of Crystal Growth, 2005, 279(3): 477-488. | 15 | HAN B, QU H Y, NIEMI H, et al. Mechanistic study of magnesium carbonate semibatch reactive crystallization with magnesium hydroxide and CO2[J]. Industrial & Engineering Chemistry Research, 2014, 53(30): 12077-12082. | 16 | CHEN J F, ZHENG C, CHEN G T. Interaction of macro- and micromixing on particle size distribution in reactive precipitation[J]. Chemical Engineering Science, 1996, 51(10): 1957-1966. | 17 | UEHARA-NAGAMINE E, ARMENANTE P M. Effect of process variables on the single-feed semibatch precipitation of barium sulphate[J]. Chemical Engineering Research and Design, 2001, 79(8): 979-988. | 18 | STANLEY S J. Tomographic imaging during reactive precipitation in a stirred vessel: mixing with chemical reaction[J]. Chemical Engineering Science, 2006, 61(24): 7850-7863. | 19 | MAHAJAN A J, KIRWAN D J. Micromixing effects in a two-impinging-jets precipitator[J]. AIChE Journal, 1996, 42(7): 1801-1814. | 20 | JOHNSON B K, PRUD'HOMME R K. Chemical processing and micromixing in confined impinging jets[J]. AIChE Journal, 2003, 49(9): 2264-2282. | 21 | MARCHISIO D L, RIVAUTELLA L, BARRESI A A. Design and scale-up of chemical reactors for nanoparticle precipitation[J]. AIChE Journal, 2006, 52(5): 1877-1887. | 22 | WOO X Y, TAN R B H, BRAATZ R D. Modeling and computational fluid dynamics-population balance equation-micromixing simulation of impinging jet crystallizers[J]. Crystal Growth & Design, 2009, 9(1): 156-164. | 23 | ALI H S M, YORK P, BLAGDEN N. Preparation of hydrocortisone nanosuspension through a bottom-up nanoprecipitation technique using microfluidic reactors[J]. International Journal of Pharmaceutics, 2009, 375(1): 107-113. | 24 | LINDENBERG C, MAZZOTTI M. Continuous precipitation of L-asparagine monohydrate in a micromixer: estimation of nucleation and growth kinetics[J]. AIChE Journal, 2011, 57(4): 942-950. | 25 | JIANG M, LI Y-E D, H-H TUNG, et al. Effect of jet velocity on crystal size distribution from antisolvent and cooling crystallizations in a dual impinging jet mixer[J]. Chemical Engineering and Processing: Process Intensification, 2015, 97: 242-247. | 26 | METZGER L, KIND M. On the transient flow characteristics in confined impinging jet mixers-CFD simulation and experimental validation[J]. Chemical Engineering Science, 2015, 133: 91-105. | 27 | BLANDIN A F, MANGIN D, NALLET V, et al. Kinetics identification of salicylic acid precipitation through experiments in a batch stirred vessel and a T-mixer[J]. Chemical Engineering Journal, 2001, 81(1): 91-100. | 28 | H-C SCHWARZER, PEUKERT W. Combined experimental/numerical study on the precipitation of nanoparticles[J]. AIChE Journal, 2004, 50(12): 3234-3247. | 29 | GRADL J, H-C SCHWARZER, SCHWERTFIRM F, et al. Precipitation of nanoparticles in a T-mixer: coupling the particle population dynamics with hydrodynamics through direct numerical simulation[J]. Chemical Engineering and Processing: Process Intensification, 2006, 45(10): 908-916. | 30 | LINDENBERG C, SCH?LL J, VICUM L, et al. Experimental characterization and multi-scale modeling of mixing in static mixers[J]. Chemical Engineering Science, 2008, 63(16): 4135-4149. | 31 | LIU Y, CHENG C, LIU Y, et al. Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation[J]. Chemical Engineering Science, 2008, 63(11): 2829-2842. | 32 | LINDENBERG C, MAZZOTTI M. Experimental characterization and multi-scale modeling of mixing in static mixers. Part 2. Effect of viscosity and scale-up[J]. Chemical Engineering Science, 2009, 64(20): 4286-4294. | 33 | FERGUSON S, MORRIS G, HAO H, et al. In-situ monitoring and characterization of plug flow crystallizers[J]. Chemical Engineering Science, 2012, 77: 105-111. | 34 | PIRKLE C, FOGUTH L C, BRENEK S J, et al. Computational fluid dynamics modeling of mixing effects for crystallization in coaxial nozzles[J]. Chemical Engineering and Processing: Process Intensification, 2015, 97: 213-232. | 35 | FARIAS L F I, DE SOUZA J A, BRAATZ R D, et al. Coupling of the population balance equation into a two-phase model for the simulation of combined cooling and antisolvent crystallization using OpenFOAM[J]. Computers & Chemical Engineering, 2019, 123: 246-256. | 36 | ROSA C A DA, BRAATZ R D. Multiscale modeling and simulation of macromixing, micromixing, and crystal size distribution in radial mixers/crystallizers[J]. Industrial & Engineering Chemistry Research, 2018, 57(15): 5433-5441. | 37 | WU B, FANG Y, ZHAO C, et al. Experimental study and numerical simulation of barium sulfate precipitation process in a continuous multi-orifice-impinging transverse jet reactor[J]. Powder Technology, 2017, 321: 180-189. | 38 | WU B, LI J, LI C, et al. Antisolvent crystallization intensified by a jet crystallizer and a method for investigating crystallization kinetics[J]. Chemical Engineering Science, 2020, 211: 115259. | 39 | LóPEZ-GUAJARDO E, ORTIZ-NADAL E, MONTESINOS-CASTELLANOS A, et al. Coiled flow inverter as a novel alternative for the intensification of a liquid-liquid reaction[J]. Chemical Engineering Science, 2017, 169: 179-185. | 40 | BENITEZ-CHAPA A G, NIGAM K D P, ALVAREZ A J. Process intensification of continuous antisolvent crystallization using a coiled flow inverter[J]. Industrial & Engineering Chemistry Research, 2020, 59(9): 3934-3942. | 41 | YANG H-J, CHU G-W, ZHANG J-W, et al. Micromixing efficiency in a rotating packed bed:?experiments and simulation[J]. Industrial & Engineering Chemistry Research, 2005, 44(20): 7730-7737. | 42 | ZHONG J, SHEN Z, YANG Y, et al. Preparation and characterization of uniform nanosized cephradine by combination of reactive precipitation and liquid anti-solvent precipitation under high gravity environment[J]. International Journal of Pharmaceutics, 2005, 301(1): 286-293. | 43 | CHIOU H, LI L, HU T, et al. Production of salbutamol sulfate for inhalation by high-gravity controlled antisolvent precipitation[J]. International Journal of Pharmaceutics, 2007, 331(1): 93-98. | 44 | HU T, CHIOU H, H-K CHAN, et al. Preparation of inhalable salbutamol sulphate using reactive high gravity controlled precipitation[J]. Journal of Pharmaceutical Sciences, 2008, 97(2): 944-949. | 45 | ZHAO H, WANG J, ZHANG H, et al. Facile preparation of danazol nanoparticles by high-gravity anti-solvent precipitation (HGAP) method[J]. Chinese Journal of Chemical Engineering, 2009, 17(2): 318-323. | 46 | DOUROUMIS D, SCHELER S, FAHR A. Using a modified shepards method for optimization of a nanoparticulate cyclosporine a formulation prepared by a static mixer technique[J]. Journal of Pharmaceutical Sciences, 2008, 97(2): 919-930. | 47 | ALVAREZ A J, MYERSON A S. Continuous plug flow crystallization of pharmaceutical compounds[J]. Crystal Growth & Design, 2010, 10(5): 2219-2228. | 48 | BROWN C J, NI X-W. Evaluation of growth kinetics of antisolvent crystallization of paracetamol in an oscillatory baffled crystallizer utilizing video imaging[J]. Crystal Growth & Design, 2011, 11(9): 3994-4000. | 49 | BROWN C J, ADELAKUN J A, NI X-W. Characterization and modelling of antisolvent crystallization of salicylic acid in a continuous oscillatory baffled crystallizer[J]. Chemical Engineering and Processing: Process Intensification, 2015, 97: 180-186. | 50 | MCGLONE T, BRIGGS N E B, CLARK C A, et al. Oscillatory flow reactors (OFRs) for continuous manufacturing and crystallization[J]. Organic Process Research & Development, 2015, 19(9): 1186-1202. | 51 | JOLLIFFE H G, GEROGIORGIS D I. Process modelling, design and technoeconomic evaluation for continuous paracetamol crystallisation[J]. Computers & Chemical Engineering, 2018, 118: 224-235. | 52 | JIANG M, NI X-W. Reactive crystallization of paracetamol in a continuous oscillatory baffled reactor[J]. Organic Process Research & Development, 2019, 23(5): 882-890. | 53 | WANG Q-A, WANG J-X, LI M, et al. Large-scale preparation of barium sulphate nanoparticles in a high-throughput tube-in-tube microchannel reactor[J]. Chemical Engineering Journal, 2009, 149(1): 473-478. | 54 | CHEN J-F, CHEN G-Z, WANG J-X, et al. High-throughput microporous tube-in-tube microreactor as novel gas-liquid contactor: mass transfer study[J]. AIChE Journal, 2011, 57(1): 239-249. | 55 | LIANG Y, CHU G, WANG J, et al. Controllable preparation of nano-CaCO3 in a microporous tube-in-tube microchannel reactor[J]. Chemical Engineering and Processing: Process Intensification, 2014, 79: 34-39. | 56 | LIU W J, MA C Y, LIU J J, et al. Analytical technology aided optimization and scale-up of impinging jet mixer for reactive crystallization process[J]. AIChE Journal, 2015, 61(2): 503-517. | 57 | LIU W J, MA C Y, LIU J J, et al. Continuous reactive crystallization of pharmaceuticals using impinging jet mixers[J]. AIChE Journal, 2017, 63(3): 967-974. | 58 | BECK C, DALVI S V, DAVE R N. Controlled liquid antisolvent precipitation using a rapid mixing device[J]. Chemical Engineering Science, 2010, 65(21): 5669-5675. | 59 | POHL B, JAMSHIDI R, BRENNER G, et al. Experimental study of continuous ultrasonic reactors for mixing and precipitation of nanoparticles[J]. Chemical Engineering Science, 2012, 69(1): 365-372. | 60 | GUO Z, ZHANG M, LI H, et al. Effect of ultrasound on anti-solvent crystallization process[J]. Journal of Crystal Growth, 2005, 273(3): 555-563. | 61 | GUO Z, JONES A G, LI N. The effect of ultrasound on the homogeneous nucleation of BaSO4 during reactive crystallization[J]. Chemical Engineering Science, 2006, 61(5): 1617-1626. | 62 | GUO Z, JONES A G, HAO H, et al. Effect of ultrasound on the heterogeneous nucleation of BaSO4 during reactive crystallization[J]. Journal of Applied Physics, 2007, 101(5): 054907. | 63 | VERA H U R, BAILLON F, ESPITALIER F, et al. Crystallization of α-glycine by anti-solvent assisted by ultrasound[J]. Ultrasonics Sonochemistry, 2019, 58: 104671. | 64 | HATKAR U N, GOGATE P R. Process intensification of anti-solvent crystallization of salicylic acid using ultrasonic irradiations[J]. Chemical Engineering and Processing: Process Intensification, 2012, 57/58: 16-24. | 65 | NII S, TAKAYANAGI S. Growth and size control in anti-solvent crystallization of glycine with high frequency ultrasound[J]. Ultrasonics Sonochemistry, 2014, 21(3): 1182-1186. | 66 | 杭方学, 丘泰球. 超声对穿心莲内酯溶析结晶的影响[J]. 高校化学工程学报, 2008, 22 (4): 585-590. | 66 | HANG F X, QIU T Q. Effect of ultrasound on andrographolide solventing-out crystallization process[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(4): 585-590. | 67 | 刘玉强, 张志强, 毕秋艳, 等. 超声波对碳酸锂反应结晶过程的影响[J]. 无机盐工业, 2019, 51(4): 42-47. | 67 | LIU Y Q, ZHANG Z Q, BI Q Y, et al. Influence of ultrasonic on reaction crystallization process of lithium carbonate[J]. Inorganic Chemicals Industry, 2019, 51(4): 42-47. | 68 | BHANGU S K, ASHOKKUMAR M, LEE J. Ultrasound assisted crystallization of paracetamol: crystal size distribution and polymorph control[J]. Crystal Growth & Design, 2016, 16(4): 1934-1941. | 69 | THORAT A A, DALVI S V. Ultrasound-assisted modulation of concomitant polymorphism of curcumin during liquid antisolvent precipitation[J]. Ultrasonics Sonochemistry, 2016, 30: 35-43. | 70 | KüGLER R T, KIND M. Experimental study about plugging in confined impinging jet mixers during the precipitation of strontium sulfate[J]. Chemical Engineering and Processing: Process Intensification, 2016, 101: 25-32. | 71 | MADSEN H E L. Influence of magnetic field on the precipitation of some inorganic salts[J]. Journal of Crystal Growth, 1995, 152(1): 94-100. | 72 | 罗志强, 杨庆峰. 旋转磁场与水量耦合对CaCO3结晶的影响[J]. 化工学报, 2018, 69(7): 3029-3037. | 72 | LUO Z Q, YANG Q F. Effect of rotating magnetic field coupled with water volume on CaCO3 crystallization[J]. CIESC Journal, 2018, 69(7): 3029-3037. | 73 | COSTA Z S, MENESES C T, CASTRO B, et al. Influence of magnetic field on barium sulfate incrustation from aqueous solutions[J]. Heliyon, 2019, 5(7): e02032. | 74 | TAI C Y, WU C-K, CHANG M-C. Effects of magnetic field on the crystallization of CaCO3 using permanent magnets[J]. Chemical Engineering Science, 2008, 63(23): 5606-5612. | 75 | CHANG M-C, TAI C Y. Effect of the magnetic field on the growth rate of aragonite and the precipitation of CaCO3[J]. Chemical Engineering Journal, 2010, 164(1): 1-9. | 76 | ZARKADAS D M, SIRKAR K K. Antisolvent crystallization in porous hollow fiber devices[J]. Chemical Engineering Science, 2006, 61(15): 5030-5048. | 77 | DRIOLI E, STANKIEWICZ A I, MACEDONIO F. Membrane engineering in process intensification: an overview[J]. Journal of Membrane Science, 2011, 380(1): 1-8. | 78 | KIEFFER R, MANGIN D, PUEL F, et al. Precipitation of barium sulphate in a hollow fiber membrane contactor. Part Ⅰ: Investigation of particulate fouling[J]. Chemical Engineering Science, 2009, 64(8): 1759-1767. | 79 | KIEFFER R, MANGIN D, PUEL F, et al. Precipitation of barium sulphate in a hollow fiber membrane contactor. Part Ⅱ: The influence of process parameters[J]. Chemical Engineering Science, 2009, 64(8): 1885-1891. | 80 | OTHMAN R, VLADISAVLJEVI? G T, SIMONE E, et al. Preparation of microcrystals of piroxicam monohydrate by antisolvent precipitation via microfabricated metallic membranes with ordered pore arrays[J]. Crystal Growth & Design, 2017, 17(12): 6692-6702. | 81 | FERN J C W, OHSAKI S, WATANO S, et al. Continuous synthesis of nano-drug particles by antisolvent crystallization using a porous hollow-fiber membrane module[J]. International Journal of Pharmaceutics, 2018, 543(1): 139-150. | 82 | 盛磊, 脱凌晗, 姜晓滨, 等. 有机膜精确调控传质的新型溶析结晶及过程强化[J]. 化工进展, 2020, 39(5): 1692-1700. | 82 | SHENG L, TUO L H, JIANG X B, et al. Novel antisolvent crystallization and process intensification via the accurate mass transfer control of the organic membrane[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1692-1700. | 83 | LI J, SHENG L, TUO L, et al. Membrane-assisted antisolvent crystallization: interfacial mass-transfer simulation and multistage process control[J]. Industrial & Engineering Chemistry Research, 2020, 59(21): 10160-10171. | 84 | OMAR H M, ROHANI S. Crystal population balance formulation and solution methods: a review[J]. Crystal Growth & Design, 2017, 17(7): 4028-4041. | 85 | 李希,陈建峰,陈甘棠. 微观混和研究的现状[J]. 化学反应工程与工艺, 1994, 10(2): 103-112. | 85 | LI X, CHEN J F, CHEN G T. Micromixing—The state of the art[J]. Chemical Reaction Engineering and Technology, 1994, 10(2): 103-112. | 86 | BALDYGA J, BOURNE J R. A fluid mechanical approach to turbulent mixing and chemical reaction. Part II. Micromixing in the light of turbulence theory[J]. Chemical Engineering Communications, 1984, 28(4/5/6): 243-258. | 87 | BALDYGA J, BOURNE J R. Simplification of micromixing calculations. Ⅰ. Derivation and application of new model[J]. The Chemical Engineering Journal, 1989, 42(2): 83-92. | 88 | BALDYGA J, BOURNE J R, HEARN S J. Interaction between chemical reactions and mixing on various scales[J]. Chemical Engineering Science, 1997, 52(4): 457-466. | 89 | FALK L, SCHAER E. A PDF modelling of precipitation reactors[J]. Chemical Engineering Science, 2001, 56(7): 2445-2457. | 90 | VICUM L, OTTIGER S, MAZZOTTI M, et al. Multi-scale modeling of a reactive mixing process in a semibatch stirred tank[J]. Chemical Engineering Science, 2004, 59(8): 1767-1781. | 91 | WANG L G, FOX R O. Comparison of micromixing models for CFD simulation of nanoparticle formation[J]. AIChE Journal, 2004, 50(9): 2217-2232. | 92 | ?NCüL A A, JANIGA G, THéVENIN D. Comparison of various micromixing approaches for computational fluid dynamics simulation of barium sulfate precipitation in tubular reactors[J]. Industrial & Engineering Chemistry Research, 2009, 48(2): 999-1007. | 93 | MARCHISIO D L, FOX R O, BARRESI A A, et al. On the simulation of turbulent precipitation in a tubular reactor via computational fluid dynamics (CFD)[J]. Chemical Engineering Research and Design, 2001, 79(8): 998-1004. | 94 | MARCHISIO D L, BARRESI A A, GARBERO M. Nucleation, growth, and agglomeration in barium sulfate turbulent precipitation[J]. AIChE Journal, 2002, 48(9): 2039-2050. | 95 | MAKOWSKI L, ORCIUCH W, BALDYGA J. Large eddy simulations of mixing effects on the course of precipitation process[J]. Chemical Engineering Science, 2012, 77: 85-94. | 96 | ST?HL M, RASMUSON ? C. Towards predictive simulation of single feed semibatch reaction crystallization[J]. Chemical Engineering Science, 2009, 64(7): 1559-1576. | 97 | BALDYGA J, PODGóRSKA W, POHORECKI R. Mixing-precipitation model with application to double feed semibatch precipitation[J]. Chemical Engineering Science, 1995, 50(8): 1281-1300. | 98 | WEI H, ZHOU W, GARSIDE J. Computational fluid dynamics modeling of the precipitation process in a semibatch crystallizer[J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5255-5261. | 99 | VICUM L, MAZZOTTI M. Multi-scale modeling of a mixing-precipitation process in a semibatch stirred tank[J]. Chemical Engineering Science, 2007, 62(13): 3513-3527. | 100 | CHENG J C, YANG C, MAO Z-S, et al. CFD modeling of nucleation, growth, aggregation, and breakage in continuous precipitation of barium sulfate in a stirred tank[J]. Industrial & Engineering Chemistry Research, 2009, 48(15): 6992-7003. | 101 | ZHANG Q H, MAO Z-S, YANG C, et al. Numerical simulation of barium sulfate precipitation process in a continuous stirred tank with multiple-time-scale turbulent mixer model[J]. Industrial & Engineering Chemistry Research, 2009, 48(1): 424-429. | 102 | CHENG J C, YANG C, MAO Z-S. CFD-PBE simulation of premixed continuous precipitation incorporating nucleation, growth and aggregation in a stirred tank with multi-class method[J]. Chemical Engineering Science, 2012, 68(1): 469-480. | 103 | MOUSAVI S E, CHOUDHURY M R, RAHAMAN M S. 3D CFD-PBM coupled modeling and experimental investigation of struvite precipitation in a batch stirred reactor[J]. Chemical Engineering Journal, 2019, 361: 690-702. | 104 | GAVI E, RIVAUTELLA L, MARCHISIO D L, et al. CFD modelling of nano-particle precipitation in confined impinging jet reactors[J]. Chemical Engineering Research and Design, 2007, 85(5): 735-744. | 105 | GAVI E, MARCHISIO D L, BARRESI A A, et al. Turbulent precipitation in micromixers: CFD simulation and flow field validation[J]. Chemical Engineering Research and Design, 2010, 88(9): 1182-1193. | 106 | RIGOPOULOS S, JONES A G. Dynamic modelling of a bubble column for particle formation via a gas-liquid reaction[J]. Chemical Engineering Science, 2001, 56(21): 6177-6184. | 107 | RIGOPOULOS S, JONES A. Modeling of semibatch agglomerative gas-liquid precipitation of CaCO3 in a bubble column reactor[J]. Industrial & Engineering Chemistry Research, 2003, 42(25): 6567-6575. | 108 | LI Q, CHENG J, YANG C, et al. CFD-PBE-PBE simulation of an airlift loop crystallizer[J]. The Canadian Journal of Chemical Engineering, 2018, 96(6): 1382-1395. | 109 | ZHAO W L, BUFFO A, ALOPAEUS V, et al. Application of the compartmental model to the gas-liquid precipitation of CO2-Ca(OH)2 aqueous system in a stirred tank[J]. AIChE Journal, 2017, 63(1): 378-386. | 110 | Y-J CHOI, S-T CHUNG, OH M, et al. Investigation of crystallization in a jet Y-mixer by a hybrid computational fluid dynamics and process simulation approach[J]. Crystal Growth & Design, 2005, 5(3): 959-968. | 111 | WOO X Y, TAN R B H, CHOW P S, et al. Simulation of mixing effects in antisolvent crystallization using a coupled CFD-PDF-PBE approach[J]. Crystal Growth & Design, 2006, 6(6): 1291-1303. |
[1] |
郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[2] |
邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[3] |
王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[4] |
陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[5] |
刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[6] |
赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[7] |
常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[8] |
叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[9] |
俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[10] |
单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[11] |
王硕, 张亚新, 朱博韬. 基于灰色预测模型的水煤浆输送管道冲蚀磨损寿命预测[J]. 化工进展, 2023, 42(7): 3431-3442. |
[12] |
周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[13] |
张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[14] |
卢兴福, 戴波, 杨世亮. 转鼓内圆柱形颗粒混合的超二次曲面离散单元法模拟[J]. 化工进展, 2023, 42(5): 2252-2261. |
[15] |
王子宗, 刘罡, 王振维. 乙烯丙烯生产过程强化技术进展及思考[J]. 化工进展, 2023, 42(4): 1669-1676. |
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
|
|