化工进展 ›› 2021, Vol. 40 ›› Issue (3): 1371-1383.DOI: 10.16085/j.issn.1000-6613.2020-0875
收稿日期:
2020-05-20
出版日期:
2021-03-05
发布日期:
2021-03-17
通讯作者:
方晓明
作者简介:
周四丽(1993—),女,硕士研究生,研究方向为复合相变材料及其应用。E-mail:基金资助:
ZHOU Sili1(), ZHANG Zhengguo1,2, FANG Xiaoming1,2()
Received:
2020-05-20
Online:
2021-03-05
Published:
2021-03-17
Contact:
FANG Xiaoming
摘要:
与固-液相变材料相比,固-固相变材料(SS-PCMs)受到的关注较少;鉴于SS-PCMs具有储能密度高、无毒且腐蚀性小、相变时无液体产生且体积变化较小、不易发生相分离以及过冷度小等优点,因而是一类具有发展潜力的相变材料。本文基于SS-PCMs的研究现状,对近年来几类重要SS-PCMs如多元醇SS-PCMs、高分子类SS-PCMs及无机盐类SS-PCMs的研究进展进行了综述。简要阐述了SS-PCMs的分类以及各类SS-PCMs的性能、相变储热机制和优缺点。同时介绍了选择固-固相变材料应用时的基本原则,并针对相变材料热导率低,过冷度大、稳定性差等问题的改性研究进行了综述,还简要综述了SS-PCMs的应用研究。最后指出,未来的研究应着眼于解决已合成SS-PCMs的缺陷,开发多功能的SS-PCMs,并在SS-PCMs的实际应用方面实现突破。
中图分类号:
周四丽, 张正国, 方晓明. 固-固相变储热材料的研究进展[J]. 化工进展, 2021, 40(3): 1371-1383.
ZHOU Sili, ZHANG Zhengguo, FANG Xiaoming. Research progress of solid-solid phase change materials for thermal energy storage[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1371-1383.
多元醇 | 固-固转变 | 固-液转变 | ||
---|---|---|---|---|
相变温度/℃ | 转变热/J·g-1 | 相变温度/℃ | 转变热/J·g-1 | |
2-氨基-2-甲基-1,3-丙二醇(AMP) | 56.96 过冷严重 | 114.06 — | 108.72 102.25 | 28.02(加热) 25.61(冷却) |
新戊二醇(NPG) | 44.09 17.51 | 116.54 81.90 | 123.05 119.04 | 28.80(加热) 25.61(冷却) |
三羟甲基乙烷(PG) | 81.76 | 172.58 | 199.63 | 42.65(加热) |
三羟甲基氨基甲烷(TAM) | 133.83 | 270.31 | 171.72 | 24.99(加热) |
季戊四醇(PE) | 185.45 165.19 | 209.45 180.93 | 257.07 244.99 | 33.61(加热) 13.70(冷却) |
表1 多元醇SS-PCMs的热性能[9]
多元醇 | 固-固转变 | 固-液转变 | ||
---|---|---|---|---|
相变温度/℃ | 转变热/J·g-1 | 相变温度/℃ | 转变热/J·g-1 | |
2-氨基-2-甲基-1,3-丙二醇(AMP) | 56.96 过冷严重 | 114.06 — | 108.72 102.25 | 28.02(加热) 25.61(冷却) |
新戊二醇(NPG) | 44.09 17.51 | 116.54 81.90 | 123.05 119.04 | 28.80(加热) 25.61(冷却) |
三羟甲基乙烷(PG) | 81.76 | 172.58 | 199.63 | 42.65(加热) |
三羟甲基氨基甲烷(TAM) | 133.83 | 270.31 | 171.72 | 24.99(加热) |
季戊四醇(PE) | 185.45 165.19 | 209.45 180.93 | 257.07 244.99 | 33.61(加热) 13.70(冷却) |
PCM | 熔化温度/℃ | 熔化焓/J·g-1 | 结晶温度/℃ | 结晶焓/J·g-1 | 升温速率/℃·min-1 | 参考文献 |
---|---|---|---|---|---|---|
纤维素-g-PEG | 40.7~60.1 | 77.6~203.2 | 25.1~40.6 | 44.7~203.2 | 10 | [ |
CDA/PEG4000 | 40 | 73.6 | — | — | 5 | [ |
NCC/PEG4000 | 47.2 | 103.8 | — | — | 5 | [ |
纤维素-g-mPEG | 40.2~50.4 | 133.0~175.4 | 12.2~28.9 | 97.8~157.7 | 10 | [ |
HB-PUPCM6000 | 57.5~67.0 | 91.2~138.2 | 7.8~33.2 | 89.4~132.3 | 10 | [ |
HB-PUPCM6000 | 66.6 | 124.8 | 33.1 | 121.4 | 10 | [ |
HB-PUPCM | 56.15~56.99 | 117.1~146.6 | 36.61~36.98 | 88.35~125.6 | 10/5 | [ |
PEG10000-MDI-BDO | 65.28 | 138.7 | 38.58 | 126.2 | 10 | [ |
PEG6000-MDI-BDO/SA | 65.28 | 152.7 | — | — | 10 | [ |
D-HBPU | 59.0 | 125.0 | 36.8 | 120.6 | 10 | [ |
TPUPCM | 56.1 | 137.4 | 37.5 | 127.6 | — | [ |
PU高聚物-6 | 57.1 | 142.5 | 33.2 | 137.7 | 10 | [ |
PU高聚物-10 | 60.8 | 152.3 | 34.8 | 149.7 | 10 | [ |
SPCM | 44.3 | 122.4 | 37.2 | 120.3 | 10 | [ |
TPCM | 47.8 | 127.7 | 38.5 | 130.2 | 10 | [ |
PEG/MDI/丙三醇 | 41.8 | 128.5 | 38.1 | 112.3 | 10 | [ |
PEG/MDI/TMP | 42.5 | 119.3 | 38.3 | 106.7 | 10 | [ |
PEG6000/PAPI | 50.48 | 111.7 | 41.38 | 110.4 | 10 | [ |
BPU | 43.4/52.8 | 86.0/114.9 | 24.5/28.8 | 83.1/111.2 | 10 | [ |
NPU | 55.8/55.7 | 136.5/137.5 | 27.7/33.6 | 128.0/129.8 | 10 | [ |
Eu-PEG | 62.46~72.13 | 19.83~96.62 | 24.96~44.89 | 16.38~83.18 | — | [ |
聚苯乙烯-g-PEG6000 | 44.95~58.04 | 111.48~179.47 | 34.36~38.48 | 99.43~143.6 | 5 | [ |
SMA-g-PEG6000 | 39.69~45.03 | 107.04~155.21 | 23.68~33.56 | 109.86~142.62 | 10 | [ |
DC-PCM | 40.6~71.0 | 44.3~87.8 | 7.5~39.2 | 29.3~107.2 | 5 | [ |
Fe3+-PEG | — | 97.6 | — | 92.9 | 5 | [ |
Poly(S-PA-S) | 18.72~21.47 | 26.20~39.78 | 17.65~18.72 | 20.02~39.19 | 5 | [ |
SAN-g-PA | 24.7~36.1 | 11.7~24.4 | 23.9~33.8 | 11.6~23.7 | 10 | [ |
SMA-g-SA | 67.2~67.4 | 59.3~126.7 | 62.9~63.8 | 60.7~125.0 | 5 | [ |
SMA-g-PA | 61.0~61.6 | 41.7~119.8 | 55.6~57.1 | 42.4~117.7 | 5 | [ |
SMA-g-MA | 53.0~54 | 35.7~109.7 | 45.8~47.5 | 32.4~114.8 | 5 | [ |
SMA-g-LA | 42.3~43.7 | 17.6~84.2 | 37.3~38.7 | 13.4~74.8 | 5 | [ |
MBA/PEGA | 52.99~57.15 | 74.13~168.96 | 30.59~38.27 | 42.01~145.97 | 10 | [ |
纤维素-g-E2C16 | 28.2~28.6 | 21~33 | 12.9~14.9 | 18~30 | 30/10 | [ |
CA-g-PAn | 17.4~53.2 | 15~95 | 5.1~36.7 | 15~92 | 10 | [ |
表2 高分子类SS-PCMs的性能
PCM | 熔化温度/℃ | 熔化焓/J·g-1 | 结晶温度/℃ | 结晶焓/J·g-1 | 升温速率/℃·min-1 | 参考文献 |
---|---|---|---|---|---|---|
纤维素-g-PEG | 40.7~60.1 | 77.6~203.2 | 25.1~40.6 | 44.7~203.2 | 10 | [ |
CDA/PEG4000 | 40 | 73.6 | — | — | 5 | [ |
NCC/PEG4000 | 47.2 | 103.8 | — | — | 5 | [ |
纤维素-g-mPEG | 40.2~50.4 | 133.0~175.4 | 12.2~28.9 | 97.8~157.7 | 10 | [ |
HB-PUPCM6000 | 57.5~67.0 | 91.2~138.2 | 7.8~33.2 | 89.4~132.3 | 10 | [ |
HB-PUPCM6000 | 66.6 | 124.8 | 33.1 | 121.4 | 10 | [ |
HB-PUPCM | 56.15~56.99 | 117.1~146.6 | 36.61~36.98 | 88.35~125.6 | 10/5 | [ |
PEG10000-MDI-BDO | 65.28 | 138.7 | 38.58 | 126.2 | 10 | [ |
PEG6000-MDI-BDO/SA | 65.28 | 152.7 | — | — | 10 | [ |
D-HBPU | 59.0 | 125.0 | 36.8 | 120.6 | 10 | [ |
TPUPCM | 56.1 | 137.4 | 37.5 | 127.6 | — | [ |
PU高聚物-6 | 57.1 | 142.5 | 33.2 | 137.7 | 10 | [ |
PU高聚物-10 | 60.8 | 152.3 | 34.8 | 149.7 | 10 | [ |
SPCM | 44.3 | 122.4 | 37.2 | 120.3 | 10 | [ |
TPCM | 47.8 | 127.7 | 38.5 | 130.2 | 10 | [ |
PEG/MDI/丙三醇 | 41.8 | 128.5 | 38.1 | 112.3 | 10 | [ |
PEG/MDI/TMP | 42.5 | 119.3 | 38.3 | 106.7 | 10 | [ |
PEG6000/PAPI | 50.48 | 111.7 | 41.38 | 110.4 | 10 | [ |
BPU | 43.4/52.8 | 86.0/114.9 | 24.5/28.8 | 83.1/111.2 | 10 | [ |
NPU | 55.8/55.7 | 136.5/137.5 | 27.7/33.6 | 128.0/129.8 | 10 | [ |
Eu-PEG | 62.46~72.13 | 19.83~96.62 | 24.96~44.89 | 16.38~83.18 | — | [ |
聚苯乙烯-g-PEG6000 | 44.95~58.04 | 111.48~179.47 | 34.36~38.48 | 99.43~143.6 | 5 | [ |
SMA-g-PEG6000 | 39.69~45.03 | 107.04~155.21 | 23.68~33.56 | 109.86~142.62 | 10 | [ |
DC-PCM | 40.6~71.0 | 44.3~87.8 | 7.5~39.2 | 29.3~107.2 | 5 | [ |
Fe3+-PEG | — | 97.6 | — | 92.9 | 5 | [ |
Poly(S-PA-S) | 18.72~21.47 | 26.20~39.78 | 17.65~18.72 | 20.02~39.19 | 5 | [ |
SAN-g-PA | 24.7~36.1 | 11.7~24.4 | 23.9~33.8 | 11.6~23.7 | 10 | [ |
SMA-g-SA | 67.2~67.4 | 59.3~126.7 | 62.9~63.8 | 60.7~125.0 | 5 | [ |
SMA-g-PA | 61.0~61.6 | 41.7~119.8 | 55.6~57.1 | 42.4~117.7 | 5 | [ |
SMA-g-MA | 53.0~54 | 35.7~109.7 | 45.8~47.5 | 32.4~114.8 | 5 | [ |
SMA-g-LA | 42.3~43.7 | 17.6~84.2 | 37.3~38.7 | 13.4~74.8 | 5 | [ |
MBA/PEGA | 52.99~57.15 | 74.13~168.96 | 30.59~38.27 | 42.01~145.97 | 10 | [ |
纤维素-g-E2C16 | 28.2~28.6 | 21~33 | 12.9~14.9 | 18~30 | 30/10 | [ |
CA-g-PAn | 17.4~53.2 | 15~95 | 5.1~36.7 | 15~92 | 10 | [ |
PCM | 相变温度/℃ | 相变焓/J·g-1 | 熔化温度/℃ | 熔化焓/J·g-1 | 参考文献 |
---|---|---|---|---|---|
(C12H25NH3)2ZnCl4 | 88.23 | 105.01 | — | — | [ |
(C12H25NH3)2CoCl4 | 63.85,67.85 | 33.72,59.30 | — | — | [ |
(C12H25NH3)2MnCl4 | 53.85,55.85 | 74.31,6.59 | — | — | [ |
(C10H21NH3)2CuCl4 | 33.77 | 55.13 | 36.91 | 7.53 | [ |
(C10H21NH3)2ZnCl4 | 80.14 | 82.90 | 162.79 | 18.14 | [ |
(C10H21NH3)2CdCl4 | 27.0,61.0 | 34.5,8.25 | 121.0 | 13.13 | [ |
(C10H21NH3)2HgCl4 | 36.73 | 28.02 | 203.0 | 50.42 | [ |
(C10H21NH3)2MnCl4 | 32.80 | 77.44 | — | — | [ |
(C10H21NH3)2CoCl4 | 77.71 | 74.38 | 165.0 | 13.70 | [ |
(C10H21NH3)2NiCl4 | 32.0,58.0 | 15.2 | 135.0 | 65.76 | [ |
表3 部分(n-CnH2n+1NH3)2MCl4的相变性能
PCM | 相变温度/℃ | 相变焓/J·g-1 | 熔化温度/℃ | 熔化焓/J·g-1 | 参考文献 |
---|---|---|---|---|---|
(C12H25NH3)2ZnCl4 | 88.23 | 105.01 | — | — | [ |
(C12H25NH3)2CoCl4 | 63.85,67.85 | 33.72,59.30 | — | — | [ |
(C12H25NH3)2MnCl4 | 53.85,55.85 | 74.31,6.59 | — | — | [ |
(C10H21NH3)2CuCl4 | 33.77 | 55.13 | 36.91 | 7.53 | [ |
(C10H21NH3)2ZnCl4 | 80.14 | 82.90 | 162.79 | 18.14 | [ |
(C10H21NH3)2CdCl4 | 27.0,61.0 | 34.5,8.25 | 121.0 | 13.13 | [ |
(C10H21NH3)2HgCl4 | 36.73 | 28.02 | 203.0 | 50.42 | [ |
(C10H21NH3)2MnCl4 | 32.80 | 77.44 | — | — | [ |
(C10H21NH3)2CoCl4 | 77.71 | 74.38 | 165.0 | 13.70 | [ |
(C10H21NH3)2NiCl4 | 32.0,58.0 | 15.2 | 135.0 | 65.76 | [ |
SS-PCM | 热导率/W·m-1·K-1 | 参考文献 |
---|---|---|
NPG | 0.12~0.24 | [ |
PG | 0.232~0.36 | [ |
PE | 0.106 | [ |
聚苯乙烯-g-PEG | 0.10~0.13 | [ |
聚(S-PA-S) | 0.13~0.2 | [ |
硬脂酸 | 0.18 | [ |
S-AA-SE | 0.12~0.15 | [ |
(n-C6H13)2NH2Br | 0.12~0.17 | [ |
表4 SS-PCMs的热导率
SS-PCM | 热导率/W·m-1·K-1 | 参考文献 |
---|---|---|
NPG | 0.12~0.24 | [ |
PG | 0.232~0.36 | [ |
PE | 0.106 | [ |
聚苯乙烯-g-PEG | 0.10~0.13 | [ |
聚(S-PA-S) | 0.13~0.2 | [ |
硬脂酸 | 0.18 | [ |
S-AA-SE | 0.12~0.15 | [ |
(n-C6H13)2NH2Br | 0.12~0.17 | [ |
SS-PCM | 过冷度/℃ | 参考文献 |
---|---|---|
PE | 24.3 | [ |
NPG | 43.3 | [ |
(C8H17NH3)2ZnCl4 | 9.9 | [ |
(C10H21NH3)2ZnCl4 | 6.5 | [ |
(C14H29NH3)2ZnCl4 | 6.6 | [ |
(C8H17NH3)2CoCl4 | 9.3 | [ |
(C8H17NH3)2CaCl4 | 8.4 | [ |
(C10H21NH3)2CaCl4 | 8.7 | [ |
(C14H29NH3)2CaCl4 | 9.1 | [ |
(C18H37NH3)2CaCl4 | 9.5 | [ |
(C10H21NH3)2ZnCl4-(C10H21NH3)2CoCl4 | 7 | [ |
(C18H37NH3)2CuCl4-(C18H37NH3)2MnCl4 | 9 | [ |
(C16H33NH3)2CuCl4-(C18H37NH3)2CoCl4 | 8 | [ |
(C10H21NH3)2CoCl4-(C10H21NH3)2CaCl4 | 9 | [ |
(C8H17NH3)2MnCl4 | 0.6 | [ |
(C10H21NH3)2MnCl4 | 1.3 | [ |
(C12H25NH3)2MnCl4 | 1.4 | [ |
表5 SS-PCMs的过冷度
SS-PCM | 过冷度/℃ | 参考文献 |
---|---|---|
PE | 24.3 | [ |
NPG | 43.3 | [ |
(C8H17NH3)2ZnCl4 | 9.9 | [ |
(C10H21NH3)2ZnCl4 | 6.5 | [ |
(C14H29NH3)2ZnCl4 | 6.6 | [ |
(C8H17NH3)2CoCl4 | 9.3 | [ |
(C8H17NH3)2CaCl4 | 8.4 | [ |
(C10H21NH3)2CaCl4 | 8.7 | [ |
(C14H29NH3)2CaCl4 | 9.1 | [ |
(C18H37NH3)2CaCl4 | 9.5 | [ |
(C10H21NH3)2ZnCl4-(C10H21NH3)2CoCl4 | 7 | [ |
(C18H37NH3)2CuCl4-(C18H37NH3)2MnCl4 | 9 | [ |
(C16H33NH3)2CuCl4-(C18H37NH3)2CoCl4 | 8 | [ |
(C10H21NH3)2CoCl4-(C10H21NH3)2CaCl4 | 9 | [ |
(C8H17NH3)2MnCl4 | 0.6 | [ |
(C10H21NH3)2MnCl4 | 1.3 | [ |
(C12H25NH3)2MnCl4 | 1.4 | [ |
1 | 黄睿, 方晓明, 凌子夜, 等. 高性能三水醋酸钠-尿素-膨胀石墨混合相变材料的制备及其在电地暖中的应用性能[J]. 化工学报, 2020, 71(6): 2713-2723. |
HUANG Rui, FANG Xiaoming, LING Ziye, et al. Preparation of high-performance sodium acetate trihydrate-urea-expanded graphite mixed phase change material and its application performance in electric floor heating[J]. CIESC Journal, 2020, 71(6): 2713-2723. | |
2 | RAJ C R, SURESH S, BHAVSAR R R, et al. Recent developments in thermo-physical property enhancement and applications of solid solid phase change materials[J]. Journal of Thermal Analysis and Calorimetry, 2019, 139(5): 3023-3049. |
3 | 李志生, 张姝婷. 相变材料的研究进展与应用综述[J]. 建筑节能, 2016, 44(4): 57-60, 107. |
LI Zhisheng, ZHANG Shuting. Research progress and application of phase change materials[J]. Building Energy Efficiency, 2016, 44 (4): 57-60, 107. | |
4 | 于少明, 蒋长龙, 杭国培, 等. 固固相变贮能材料研究现状与进展[J]. 化工新型材料, 2002(7): 19-21. |
YU Shaoming, JIANG Changlong, HANG Guopei, et al. Current situation and progress in studies of solid-solid phase change materials for energy storage[J]. New Chemical Materials, 2002(7): 19-21. | |
5 | FALLAHI A, GULDENTOPS G, TAO Mingjiang, et al. Review on solid-solid phase change materials for thermal energy storage: molecular structure and thermal properties[J]. Applied Thermal Engineering, 2017, 127: 1427-1441. |
6 | 樊耀峰, 张兴祥. 有机固-固相变材料的研究进展[J]. 材料导报, 2003(7): 50-53, 81. |
FAN Yaofeng, ZHANG Xingxiang. Progress in studies of solid-solid phase change materials[J]. Materials Review, 2003(7): 50-53, 81. | |
7 | 王小伍, 徐海红. 多元醇固-固相变机理的研究[J]. 物理学报, 2011, 60(3): 136-139. |
WANG Xiaowu, XU Haihong. Mechanism of polyalcohol solid-solid phase change[J]. Acta Physica Sinica, 2011, 60(3): 136-139. | |
8 | 邢澄清, 迟广山, 阮德水, 等. 多元醇二元体系固-固相变贮热的研究[J]. 太阳能学报, 1995(2): 131-137. |
XING Dengqing, CHI Guangshan, Ruan Deshui, et al. Solid state phase transition in binary systems of polyhydric alcohols[J]. Acta Energiae Solaris Sinica, 1995(2): 131-137. | |
9 | 阮德水, 张太平, 张道圣, 等. 相变贮热材料的DSC研究[J]. 太阳能学报, 1994(1): 19-24. |
RUAN Deshui, ZHANG Taiping, ZHANG Daosheng, et al. DSC investigation of phase change materials[J]. Acta Energiae Solaris Sinica, 1994(1): 19-24. | |
10 | FONT J, MUNTASELL J, NAVARRO J, et al. Time and temperature dependence of the exchanged energy on solid-solid transitions of pentaglycerine/neopentylglycol mixtures[J]. Solar Energy Materials, 1987, 15(5): 403-412. |
11 | FONT J, MUNTASELL J, NAVARRO J, et al. Calorimetric study of the mixtures PE/NPG and PG/NPG[J]. Solar Energy Materials, 1987, 15(4): 299-310. |
12 | 闫全英, 王威. 用于墙体中的固-固相变材料储热性能的研究[J]. 能源研究与利用, 2005(1): 19-20, 23. |
YAN Quanying, WANG Wei. Research on the thermal storage performance of solid-solid phase-change material of wall[J]. Energy research and utilization, 2005(1): 19-20, 23. | |
13 | GAO Wenfeng, LIN Wenxian, LIU Tao, et al. An experimental study on the heat storage performances of polyalcohols NPG, TAM, PE, and AMPD and their mixtures as solid-solid phase-change materials for solar energy applications[J]. International Journal of Green Energy, 2007, 4(3): 301-311. |
14 | YAN Quanying, LIANG Chen. The thermal storage performance of monobasic, binary and triatomic polyalcohols systems[J]. Solar Energy, 2008, 82 (7): 656-662. |
15 | WANG Xiaowu, LU Enrong, LIN Wenxian, et al. Micromechanism of heat storage in a binary system of two kinds of polyalcohols as a solid-solid phase change material[J]. Energy Conversion and Management, 2000, 41(2): 135-144. |
16 | WANG Xiaowu, LU Enrong, LIN Wenxian, et al. Heat storage performance of the binary systems neopentyl glycol/pentaerythritol and neopentyl glycol/trihydroxy methyl-aminomethane as solid-solid phase change materials[J]. Energy Conversion and Management, 2000, 41(2): 129-134. |
17 | VENKITARAJ K P, SURESH S, PRAVEEN B, et al. Pentaerythritol with alumina nano additives for thermal energy storage applications[J]. Journal of Energy Storage, 2017, 13: 359-377. |
18 | CAO Fangyu, YE Jing, YANG Bao. Synthesis and characterization of solid-state phase change material microcapsules for thermal management applications[J]. Journal of Nanotechnology in Engineering and Medicine, 2014, 4(4): 040901-040905. |
19 | 杨磊, 姚远, 张冬冬, 等. 有机相变储能材料的研究进展[J]. 新能源进展, 2019, 7(5): 464-472. |
YANG Lei, YAO Yuan, ZHANG Dongdong, et al. Progress of organic phase change energy storage materials[J]. Advances in New and Renewable Energy, 2019, 7 (5): 464-472. | |
20 | 钟秋, 张威, 赵春芳, 等. 固-固相变储热材料的研究进展[J]. 广州化工, 2016, 44(23): 4-6. |
ZHONG Qiu, ZHANG Wei, ZHAO Chunfang, et al. Research progress on polymer solid-solid phase transition materials for thermal energy storage[J]. GuangZhou Chemical Industry and Technology, 2016, 44(23): 4-6. | |
21 | LI Yanxiang, WU Min, LIU Ruigang, et al. Cellulose-based solid-solid phase change materials synthesized in ionic liquid[J]. Solar Energy Materials and Solar Cells, 2009, 93(8): 1321-1328. |
22 | 姜勇, 丁恩勇, 杨玉芹, 等. 化学法和共混法制备的PEG/CDA相变材料的性能比较——微相结构与储热性能的关系[J]. 纤维素科学与技术, 2000(2): 36-41, 12. |
JIANG Yong, DING Enyong, YANG Yuqin, et al. Performance comparison of PEG/CDA phase change materials prepared by chemical method and blending method — The relationship between microphase structure and heat storage performance[J]. Journal of Cellulose Science and Technology, 2000(2): 36-41, 12. | |
23 | 姜勇, 丁恩勇, 黎国康. 化学法和共混法制备的PEG/CDA相变材料的性能比较——储热性能与链结构的关系[J]. 纤维素科学与技术, 2000(1): 17-25. |
JIANG Yong, DING Enyong, LI Guokang. Performance comparison of PEG/CDA phase change materials prepared by chemical method and blending method — the relationship between heat storage performance and chain structure[J]. Journal of Cellulose Science and Technology, 2000(1): 17-25. | |
24 | YUAN Xiaoping, DING Enyong. Synthesis and characterization of storage energy materials prepared from nano-crystalline cellulose/polyethylene glycol[J]. Chinese Chemical Letters, 2006, 17(8): 1129-1132. |
25 | 原小平, 丁恩勇. 纳米纤维素/聚乙二醇固-固相变材料的制备及其储能性能的研究[J]. 林产化学与工业, 2007(2): 67-70. |
YUAN Xiaoping, DING Enyong. Preparation of nano-crystalline cellulose/polyethylene glycol solid-solid phase transition material and its energy storage characteristics[J]. Chemistry & Industry of Forest Products, 2007(2): 67-70. | |
26 | LI Yanxiang, LIU Ruigang, HUANG Yong. Synthesis and phase transition of cellulose-graft-poly(ethylene glycol) copolymers[J]. Journal of Applied Polymer Science, 2008, 110(3): 1797-1803. |
27 | CAO Qi, LIU Pengsheng. Hyperbranched polyurethane as novel solid-solid phase change material for thermal energy storage[J]. European Polymer Journal, 2006, 42(11): 2931-2939. |
28 | LIAO Li, CAO Qi, LIAO Hongqing. Investigation of a hyperbranched polyurethane as a solid-state phase change material[J]. Journal of Materials Science, 2010, 45(9): 2436-2441. |
29 | SUNDARARAJAN S, SAMUI A B, KULKARNI P S. Thermal energy storage using poly(ethylene glycol) incorporated hyperbranched polyurethane as solid-solid phase change material[J]. Industrial & Engineering Chemistry Research, 2017, 56(49): 14401-14409. |
30 | SU Jingcang, LIU Pengsheng. A novel solid-solid phase change heat storage material with polyurethane block copolymer structure[J]. Energy Conversion and Management, 2006, 47(18/19): 3185-3191. |
31 | 粟劲苍, 刘朋生. 微相分离促进剂对聚氨酯相变储能材料热性能的影响[J]. 中国塑料, 2006(4): 55-58. |
SU Jingcang, LIU Pengsheng. Effect of micro-phase separation promoter on thermal behavior of phase change heat storage polyurethane materials[J]. China Plastics, 2006(4): 55-58. | |
32 | XI Peng, DUAN Yuqing, FEI Pengfei, et al. Synthesis and thermal energy storage properties of the polyurethane solid-solid phase change materials with a novel tetrahydroxy compound[J]. European Polymer Journal, 2012, 48(7): 1295-1303. |
33 | CHEN Changzhong, LIU Wenmin, WANG Hongwei, et al. Synthesis and performances of novel solid-solid phase change materials with hexahydroxy compounds for thermal energy storage[J]. Applied Energy, 2015, 152: 198-206. |
34 | CHEN Kai, LIU Ruowang, ZOU Chao, et al. Linear polyurethane ionomers as solid-solid phase change materials for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2014, 130: 466-473. |
35 | CAO Hongwei, QI Feixuanyu, LIU Ruowang, et al. The influence of hydrogen bonding on N-methyldiethanolamine-extended polyurethane solid-solid phase change materials for energy storage[J]. RSC Advances, 2017, 7(19): 11244-11252. |
36 | YUAN Ye, WU Bo, JIANG Liang, et al. Nonconstant enthalpy of thermosetting solid-solid phase change materials controlled by light[J]. Energy and Buildings, 2020, 214: 109894. |
37 | ZANG Nan, DING Enyong. Energy storage properties of phase change materials prepared from PEG/CPP[J]. Chinese Chemical Letters, 2005, (10): 1375-1378. |
38 | GU Xiaohua, XI Peng, CHENG Bowen, et al. Synthesis and characterization of a novel solid-solid phase change luminescence material[J]. Polymer International, 2010, 59(6): 772-777. |
39 | SARI A, ALKAN C, BIÇER A. Synthesis and thermal properties of polystyrene-graft-PEG copolymers as new kinds of solid-solid phase change materials for thermal energy storage[J]. Materials Chemistry and Physics, 2012, 133(1): 87-94. |
40 | SARI A, BIÇER A, ALKAN C. Thermal energy storage characteristics of poly(styrene-co-maleic anhydride)-graft-PEG as polymeric solid-solid phase change materials[J]. Solar Energy Materials and Solar Cells, 2017, 161: 219-225. |
41 | WU Bo, WANG Yi, LIU Zhimeng, et al. Thermally reliable, recyclable and malleable solid-solid phase-change materials through the classical Diels-Alder reaction for sustainable thermal energy storage[J]. Journal of Materials Chemistry A, 2019, 7(38): 21802-21811. |
42 | WANG Rui, XIAO Yao, LEI Jingxin. A solid-solid phase change material based on dynamic ion cross-linking with reprocessability at room temperature[J]. Chemical Engineering Journal, 2020, 390: 124586. |
43 | SARI A, ALKAN C, BIÇER A, et al. Synthesis and thermal energy storage characteristics of polystyrene-graft-palmitic acid copolymers as solid-solid phase change materials[J]. Solar Energy Materials and Solar Cells, 2011, 95(12): 3195-3201. |
44 | SARI A, ALKAN C, LAFÇI Ö. Synthesis and thermal properties of poly(styrene-co-ally alcohol)-graft-stearic acid copolymers as novel solid-solid PCMs for thermal energy storage[J]. Solar Energy, 2012, 86(9): 2282-2292. |
45 | SARI A, BIÇER A, ALKAN C. Poly(styrene-co-maleic anhydride)-graft-fatty acids as novel solid-solid PCMs for thermal energy storage[J]. Polymer Engineering and Science, 2019, 59(s2): E337-E347. |
46 | MU Siyang, GUO Jing, YU Chunfang, et al. A novel solid-solid phase change material based on poly(styrene-co-acrylonitrile) grafting with palmitic acid copolymers[J]. Journal of Macromolecular Science A, 2015, 52(8): 617-624. |
47 | ZHANG Hong, SUN Dike, WANG Qianqian, et al. Synthesis and characterization of polyethylene glycol acrylate crosslinking copolymer as solid-solid phase change materials[J]. Journal of Applied Polymer Science, 2014, 131(6). |
48 | HAN Na, LI Zhinan, ZHANG Xingxiang, et al. Synthesis and characterization of cellulose-g-polyoxyethylene (2) hexadecyl ether solid-solid phase change materials[J]. Cellulose, 2016, 23(3): 1663-1674. |
49 | ALKAN C, RATHGEBER C, HENNEMANN P, et al. Poly(ethylene-co-1-tetradecylacrylate) and poly(ethylene-co-1-octadecylacrylate) copolymers as novel solid-solid phase change materials for thermal energy storage[J]. Polymer Bulletin, 2018, 76(4): 2021-2039. |
50 | QIAN Yongqiang, HAN Na, BO Yiwen, et al. Homogeneous synthesis of cellulose acrylate-g-poly(n-alkyl acrylate) solid-solid phase change materials via free radical polymerization[J]. Carbohydr. Polym., 2018, 193: 129-136. |
51 | CAO Qi, LIU Pengsheng. Crystalline-amorphous phase transition of hyperbranched polyurethane phase change materials for energy storage[J]. Journal of Materials Science, 2007, 42(14): 5661-5665. |
52 | FU Xiaowei, KONG Weibo, ZHANG Yanyan, et al. Novel solid-solid phase change materials with biodegradable trihydroxy surfactants for thermal energy storage[J]. RSC Advances, 2015, 5(84): 68881-68889. |
53 | FU Xiaowei, ZHANG Yanyan, KONG Weibo, et al. Synthesis and properties of bulk-biodegradable phase change materials based on polyethylene glycol for thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2016, 128(2): 643-651. |
54 | KONG Weibo, FU Xiaowei, LIU Zhimeng, et al. A facile synthesis of solid-solid phase change material for thermal energy storage[J]. Applied Thermal Engineering, 2017, 117: 622-628. |
55 | 郭宁, 刘振海, 曾广赋, 等. [n-CnH2n+1NH3]2ZnCl4配合物相变研究[J]. 应用化学, 1991, 8(6): 53-56. |
GUO Ning, LIU Zhenhai, ZENG Guangfu, et al. Phase transition of [n-CnH2n+1NH3]2ZnCl4[J]. Chinese Journal of Applied Chemistry, 1991, 8(6): 53-56. | |
56 | GUO Ning, ZENG Guangfu, XI Shiquan. An infrared spectroscopic study of the structural phase transition in the perovskite-type layer compound [n-C16H33NH3]2CoCl4[J]. Journal of Molecular Structure, 1992, 275: 85-94. |
57 | 阮德水, 邢澄清. 固-固相变贮热的研究——四氯合金属(Ⅱ)酸正十烷铵[J]. 华中师范大学学报(自然科学版), 1995, 29(2): 193-196. |
RUAN Deshui, XING Chengqing, et al. Study of solid-solid phase change of decylammonium tetrachlorometallates(Ⅱ) for thermal energy storage[J]. Journal of Central China Normal University (Natural Sciences), 1995, 29(2): 193-196. | |
58 | LANDI E, VACATELLO M. Metal-dependent thermal behaviour in (n-CnH2n+1NH3)2MCl4[J]. Thermochimica Acta, 1975, 13(4): 441-447. |
59 | 李英品. 固-固相变储能物质——四氯合金属酸正烷基二铵及其二元体系的研究[D]. 石家庄: 河北师范大学, 2004. |
LI Yingpin. Study of solid-solid phase change of tetrachlorometallic acid n-alkyl diammonium and its binary system[D]. Shijiazhuang: Hebei Normal University, 2004. | |
60 | 张超星. 固-固相变储能物质——(CnH2n+1NH3)2MX4及其二元体系的研究[D]. 石家庄: 河北师范大学, 2005. |
ZAHNG Chaoxing. Study of solid-solid phase change of (CnH2n+1NH3)2MCl4 and their binary system for thermal energy storage[D]. Shijiazhuang: Hebei Normal University, 2005. | |
61 | RUAN Deshui, LI Weiping, HE Luofu, et al. Phase diagrams of binary systems of alkylammonium tetrachlorometallates()[J]. Journal of Thermal Analysis, 1995, 45(1): 235-242. |
62 | 韩铁城. 固-固相变储能物质(CnH2n+1NH3)2MCl4及其二元体系的研究[D]. 石家庄: 河北师范大学, 2006. |
HAN Tiecheng. Study of solid-solid phase change of (CnH2n+1NH3)2MCl4 and their binary system for thermal energy storage[D]. Shijiazhuang: Hebei Normal University, 2006. | |
63 | 武克忠, 李建玲, 王新东, 等. 贮热材料四氯合金属酸(Ⅱ)二烷基铵固-固相变动力学[J]. 北京科技大学学报, 2007(9): 928-931. |
WU Kezhong, LI Jianling, WANG Xindong, et al. Nonisothermal kinetics of solid-solid phase transitions in C12Mn, C14Mn and their binary system[J]. Journal of University of Science and Technology Beijing, 2007(9): 928-931. | |
64 | SON C, MOREHOUSE J. An experimental investigation of solid-state phase-change materials for solar thermal storage[J]. Journal of Solar Energy Engineering, 1991, 113: 244. |
65 | PRAVEEN B, SURESH S. Experimental study on heat transfer performance of neopentyl glycol/CuO composite solid-solid PCM in TES based heat sink[J]. Engineering Science and Technology, an International Journal, 2018, 21(5): 1086-1094. |
66 | ZHANG Nan, SONG Yanlin, DU Yanxia, et al. A novel solid-solid phase change material: pentaglycerine/expanded graphite composite PCMs[J]. Advanced Engineering Materials, 2018, 20(10): 1800237. |
67 | WHITMAN C A, JOHNSON M B, WHITE M A. Characterization of thermal performance of a solid-solid phase change material, di-n-hexylammonium bromide, for potential integration in building materials[J]. Thermochimica Acta, 2012, 531: 54-59. |
68 | PIELICHOWSKA K, BIEDA J, SZATKOWSKI P. Polyurethane/graphite nano-platelet composites for thermal energy storage[J]. Renewable Energy, 2016, 91: 456-465. |
69 | WANG Feng, ZHANG Ping, MOU Yongren, et al. Synthesis of the polyethylene glycol solid-solid phase change materials with a functionalized graphene oxide for thermal energy storage[J]. Polymer Testing, 2017, 63: 494-504. |
70 | AFTAB W, MAHMOOD A, GUO Wenhan, et al. Polyurethane-based flexible and conductive phase change composites for energy conversion and storage[J]. Energy Storage Materials, 2019, 20: 401-409. |
71 | BARRIO M, FONT J, MUNTASELL J, et al. Applicability for heat storage of binary systems of neopentylglycol, pentaglycerine and pentaerythritol: a comparative analysis[J]. Solar Energy Materials, 1988, 18(1): 109-115. |
72 | 赵娜. 相变储能物质(CnH2n+1NH3)2MnCl4的研究及聚乙二醇复合储能材料的初步探索[D]. 石家庄: 河北师范大学, 2006. |
ZHAO Na. Study of phase change of (CnH2n+1NH3)2MnCl4 and the preliminary exploration of polyethylene glycol composite energy storage material[D]. Shijiazhuang: Hebei Normal University, 2006. | |
73 | HU Peng, ZHAO Panpan, JIN Yi, et al. Experimental study on solid-solid phase change properties of pentaerythritol (PE)/nano-AlN composite for thermal storage[J]. Solar Energy, 2014, 102: 91-97. |
74 | GAO Chunfeng, WANG Liping, LI Qifeng, et al. Tuning thermal properties of latent heat storage material through confinement in porous media: the case of (1-CnH2n+1NH3)2ZnCl4 (n=10 and 12)[J]. Solar Energy Materials and Solar Cells, 2014, 128: 221-230. |
75 | LI Qifeng, WANG Chao, LAN Xiaozheng. Solid-solid phase transition of (1-C14H29NH3)2ZnCl4 in nanopores of silica gel for thermal energy storage[J]. Chinese Chemical Letters, 2017, 28(1): 49-54. |
76 | ZHOU Yan, LIU Xiangdong, SHENG Dekun, et al. Polyurethane-based solid-solid phase change materials with in situ reduced graphene oxide for light-thermal energy conversion and storage[J]. Chemical Engineering Journal, 2018, 338: 117-125. |
77 | ZHOU Yan, SHENG Dekun, LIU Xiangdong, et al. Synthesis and properties of crosslinking halloysite nanotubes/polyurethane-based solid-solid phase change materials[J]. Solar Energy Materials and Solar Cells, 2018, 174: 84-93. |
78 | CHATTOPADHYAY D K, WEBSTER D C. Thermal stability and flame retardancy of polyurethanes[J]. Progress in Polymer Science, 2009, 34(10): 1068-1133. |
79 | VIGO T L. Intelligent fibrous substrates with thermal and dimensional memories[J]. Polymers for Advanced Technologies, 1997, 8(5): 281-288. |
80 | KUMAR A, KULKARNI P S, SAMUI A B. Polyethylene glycol grafted cotton as phase change polymer[J]. Cellulose, 2013, 21(1): 685-696. |
81 | 马骉, 段诗雨, 魏堃, 等. 道路用聚氨酯固-固相变材料的合成及性能研究[J]. 硅酸盐通报, 2018, 37(10): 3232-3238. |
MA Biao, DUAN Shiyu, WEI Kun, et al. Synthesis and properties of polyurethane solid-solid phase change materials for highway[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10): 3232-3238. |
[1] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[2] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[3] | 吴展华, 盛敏. 绝热加速量热仪在反应安全风险评估应用中的常见问题[J]. 化工进展, 2023, 42(7): 3374-3382. |
[4] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
[5] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[6] | 杨扬, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂OP-13促进HCFC-141b水合物生成[J]. 化工进展, 2023, 42(6): 2854-2859. |
[7] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[8] | 李玲, 马超峰, 卢春山, 于万金, 石能富, 金佳敏, 张建君, 刘武灿, 李小年. 新型含氟替代品1,1,2-三氟乙烯的合成工艺与催化剂研究进展[J]. 化工进展, 2023, 42(4): 1822-1831. |
[9] | 殷铭, 郭晋, 庞纪峰, 吴鹏飞, 郑明远. 铜催化剂在涉氢反应中的失活机制和稳定策略[J]. 化工进展, 2023, 42(4): 1860-1868. |
[10] | 李云闯, 谢方明, 席亚男, 万新月, 孙玉虎, 赵永峰, 李根, 刘宏海, 高雄厚, 刘洪涛. 高水热稳定性介孔分子筛的低成本合成研究进展[J]. 化工进展, 2023, 42(4): 1877-1884. |
[11] | 王钰琢, 李刚. 硫、氮共掺杂三维石墨烯的全固态超级电容器[J]. 化工进展, 2023, 42(4): 1974-1982. |
[12] | 谭德新, 曾佳欣, 梁莉敏, 申思慧, 曾子倩, 王艳丽. 取代烷基变化对芳炔单体及其聚合物性能影响[J]. 化工进展, 2023, 42(4): 2031-2037. |
[13] | 宗悦, 张瑞君, 高珊珊, 田家宇. “特殊稳定型”压力驱动薄膜复合(TFC)脱盐膜的研究进展[J]. 化工进展, 2023, 42(4): 2058-2067. |
[14] | 李光文, 华渠成, 黄作鑫, 达志坚. 聚甲基丙烯酸酯类黏度指数改进剂的研究进展[J]. 化工进展, 2023, 42(3): 1562-1571. |
[15] | 张晨光, 封硕, 邢玉烨, 沈伯雄, 苏立超. 柴油车用NH3-SCR铜基分子筛催化剂孤立态Cu2+研究进展[J]. 化工进展, 2023, 42(3): 1321-1331. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |