1 | HUGHES T P, KERRY J T, BAIRD A H, et al. Global warming impairs stock-recruitment dynamics of corals [J]. 2019, 568 (7752): 387. | 2 | WU Y, LIU D, DUAN L, et al. Three-dimensional CFD simulation of oxy-fuel combustion in a circulating fluidized bed with warm flue gas recycle[J]. Fuel, 2018, 216: 596-611. | 3 | YANG Z, LI H, QU W, ZHANG M, et al. Role of sulfur trioxide (SO3) in gas-phase elemental mercury immobilization by mineral sulfide[J]. Environmental Science & Technology, 2019, 53(6): 3250-3257. | 4 | WU Y, LIU D, ZHENG D, et al. Numerical simulation of circulating fluidized bed oxy-fuel combustion with dense discrete phase model[J]. Fuel Processing Technology, 2019, 195: 106123. | 5 | WANG H, DUAN Y, YING Z, et al. Effects of SO2 on Hg adsorption by activated carbon in O2/CO2 conditions. Part 1: Experimental and kinetic study [J]. Energy & Fuels, 2018, 32(10): 10773-10778. | 6 | 李向阳, 李扬, 靳立军, 等. MnOx改性活性炭用于模拟烟气中Hg0的脱除[J]. 化工学报, 2019, 70(8) : 3078-3085. | 6 | LI Xiangy, LI Yang, JIN Lijun, et al. Removal of Hg0 from simulated flue gas by MnOx modified activated carbon [J]. CIESC Journal, 2019, 70(8) : 3078-3085. | 7 | YANG W, ADEWUYI Y G, HUSSAIN A, et al. Recent developments on gas-solid heterogeneous oxidation removal of elemental mercury from flue gas[J]. Environmental Chemistry Letters, 2019, 17(1) : 19-47. | 8 | 黄强, 张立麒, 周栋, 等. 富氧燃烧烟气压缩净化的研究进展[J]. 化工进展, 2018, 37(3) : 1152-1160. | 8 | HUANG Qiang, ZHANG Lipeng, ZHOU Dong, et al. Research and development on the purification of oxy-fuel combution flue gas in the process of compression[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1152-1160. | 9 | SPORL R, BELO L, SHAH K, et al. Mercury emissions and removal by ash in coal-fired oxy-fuel combustion[J]. Energy & Fuels, 2014, 28, (1): 123-135. | 10 | STRANGER R, BELO L, TING T, et al. Mercury and SO3 measurements on the fabric filter at the callide oxy-fuel project during air and oxy-fuel firing transitions[J]. International Journal of Greenhouse Gas Control, 2016, 47: 221-232. | 11 | 张笑, 沈伯雄, 池桂龙, 等. 溴改性金属有机骨架的合成及其对单质汞吸附[J]. 化工学报, 2016, 67 (6): 2380-2385. | 11 | ZHANG Xiao, SHEN Boxiong, CHI Guilong, et al. Preparation of bromine modified metal-organic frameworks for element mercury adsorption[J]. CIESC Journal, 2016, 67 (6): 2380-2385. | 12 | 吴响, 段钰锋, 姚婷, 等. Ce-Mn/TiO2吸附剂的脱汞性能及抗SO2特性[J]. 中国环境科学, 2019, 39(6): 2336-2343 | 12 | WU Xiang, DUAN Yufeng, YAO Ting, et al. Mercury removal performance and SO2 resistance of Ce-Mn/TiO2 sorbent[J]. J. China Environmental Science, 2019, 39(6): 2336-2343 | 13 | SHEN F,LIU J, DONG Y, et al. Elemental mercury removal from syngas by porous carbon-supported CuCl2 sorbents[J]. Fuel, 2019, 239: 138-144. | 14 | ZHAO S, DUAN Y, YAO T, et al. Study on the mercury emission and transformation in an ultra-low emission coal-fired power plant [J]. Fuel, 2017, 199: 653-661. | 15 | XU W, PAN J, FAN B, et al. Removal of gaseous elemental mercury using seaweed chars impregnated by NH4Cl and NH4Br[J]. Journal of Cleaner Production, 2019, 216: 277-287. | 16 | 胡长兴, 李威, 虞效益, 等. 富氧燃烧烟气中汞的氧化机理研究进展[J]. 热力发电, 2015, 44(7): 1-6. | 16 | HU Changxing, LI Wei, YU Xiaoyi, et al. Research progress in homogeneous oxidation mechanism of element mercury in oxy-fuel combution flue gas[J]. Thermal Power Generation, 2015, 44(7): 1-6. | 17 | 王铮, 薛建明, 许月阳, 等. 选择性催化还原协同控制燃煤烟气中汞排放效果影响因素研究[J]. 中国电机工程学报, 2013, 33(14): 32-37. | 17 | WANG Zheng, XUE Jianming, XU Yueyang, et al. Research on influencing factors of SCR’s cooperative control in mercury emissions from coal-fired flue[J] Proceedings of the CSEE, 2013, 33(14): 32-37. | 18 | YANG J, ZHAO Y, MA S, et al. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust [J]. Environmental Science & Technology, 2016, 50(21): 12040-12047. | 19 | 姚婷, 段钰锋, 朱纯, 等. 温度和氧含量对NH4Br改性稻壳焦汞氧化吸附特性的影响[J]. 化工学报, 2016, 67 (4): 1467-1474. | 19 | YAO Ting, DUAN Yufeng, ZHU Chun, et al. Effects of temperature and oxygen content on Hg0 oxidation and adsorption by rice husk char impregnated with NH4Br[J]. CIESC Journal, 2016, 67 (4): 1467-1474. | 20 | 李娜, 韦红旗, 段钰锋, 等. SO2与O2对硫改性石油焦吸附剂脱汞性能的影响[J]. 化工进展, 2018, 37(5): 1908-1915. | 20 | LI Na, WEI Hongqi, DUAN Yufeng, et al. Effects of SO2 and O2 on Hg0 removal capacity of sulfur modified petrol coke adsorbents[J]. Chemical Industry and Engineering Progress, 2018, 37 (5): 1908-1915. | 21 | ZHAO B, YI H, TANG X, et al. Copper modified activated coke for mercury removal from coal-fired flue gas[J]. Chemical Engineering Journal, 2016, 286: 585-593. | 22 | MA J, LI C, ZHAO L, et al. Study on removal of elemental mercury from simulated flue gas over activated coke treated by acid[J]. Applied Surface Science, 2015, 329: 292-300. | 23 | ZHANG G, WANG Z, CUI L, et al. Efficient removal of elemental mercury from coal-fired flue gas over sulfur-containing sorbent at low temperatures[J]. ACS Omega, 2019, 4: 19399-19407. | 24 | ZHOU Q, DUAN Y, CHEN M, et al. Effect of flue gas component and ash composition on elemental mercury oxidation/adsorption by NH4Br modified fly ash [J]. Chemical Engineering Journal, 2018, 345:578-585. | 25 | DUAN Y, DUAN L, WANG J, et al. Observation of simultaneously low CO, NOx and SO2 emission during oxycoal combustion in a pressurized fluidized bed [J]. Fuel, 2019, 242: 374-381. | 26 | LIU Y, DENG Y, LI T, et al. Aptamer-based electrochemical biosensor for mercury ions detection using AuNPs-modified glass carbon electrode[J]. Journal of Biomedical Nanotechnology,2018, 14(12): 2156-2161. | 27 | 周长松, 杨宏旻, 孙佳兴,等. Fe3O4协同H2O2气相高级氧化单质汞的机理[J]. 化工学报, 2018, 69 (5): 1840-1845. | 27 | ZHOU Changsong, YANG Hongmin, SUN Jiaxing, et al. Mechanism of Hg removal by gaseous advanced oxidation process with Fe3O4 and H2O2[J]. CIESC Journal, 2018, 69(5): 1840-1845. | 28 | YAO T, DUAN Y, BISSON T M, et al. Inherent thermal regeneration performance of different MnO2 crystallographic structures for mercury removal [J]. Journal of Hazardous Materials, 2019, 374: 267-275. | 29 | YANG W, CHEN H, HAN X, et al. Preparation of magnetic Co-Fe modified porous carbon from agricultural wastes by microwave and steam activation for mercury removal [J]. Journal of Hazardous Materials, 2020, 381: 120981. | 30 | WANG T, WU J, ZHANG Y, et al. Increasing the chlorine active sites in the micropores of biochar for improved mercury adsorption [J]. Fuel, 2018, 229: 60-67. | 31 | YANG J, ZHAO Y, MA S, et al. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust[J]. Environmental Science & Technology, 2016, 50: 12040-12047. | 32 | ZHOU Z, LIU X, ZHAO B, et al. Elemental mercury oxidation over manganese-based perovskite-type catalyst at low temperature[J]. Chemical Engineering Journal, 2016, 288: 701-710. | 33 | LI G, SHEN B, LI Y, et al. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions[J]. Journal of Hazardous Materials, 2015, 298: 162-169. | 34 | WANG H, WANG S, DUAN Y, et al. Experimental study of homogeneous Hg oxidation in air and oxy-simulated flue gas [J]. Journal of the Energy Institute, 2019, 92(2): 257-264. | 35 | ZHAO S, PUDASAINEE D, DUAN Y, et al. A review on mercury in coal combustion process: content and occurrence forms in coal, transformation, sampling methods, emission and control technologies [J]. Progress in Energy and Combustion Science, 2019, 73: 26-64. | 36 | RUMAYOR M, SVOBODA K, ?VEHLA J, et al. Mitigation of gaseous mercury emissions from waste-to-energy facilities: homogeneous and heterogeneous Hg-oxidation pathways in presence of fly ashes [J]. Journal of Environmental Management, 2018, 206: 276-283. | 37 | WANG H, DUAN Y, YING Z,et al. Studies on mercury adsorption species and desorption activation energy on activated carbon under oxy combustion [J]. Energy &Fuels, 2018, 32(10): 10754-10759. | 38 | SHEN F, LIU J, WU D, et al. Development of O2 and NO co-doped porous carbon as a high-capacity mercury sorbent[J]. Environmental Science & Technology, 2019, 53(3): 1725-1731. | 39 | ZHENG JM, SHAH K J, ZHOU JS, et al. Impact of HCl and O2 on removal of elemental mercury by heat-treated activated carbon: integrated X-ray analysis[J]. Fuel Processing Technology, 2017, 167: 11-17. | 40 | YANG W, LI L, ZHAO M, et al. Theoretical prediction of graphene-based single-atom iron as a novel catalyst for catalytic oxidation of Hg0 by O2[J]. Applied Surface Science, 2020, 508: 145035. | 41 | 谭增强, 刘豪, 邱建荣, 等. 榆木焦负载纳米TiO2光催化剂的制备及其脱除单质汞的试验研究[J]. 中国电机工程学报, 2010, 39(29): 37-41. | 41 | TAN Zengqiang, LIU Hao, QIU Jianrong, et al. Preparation of elm char/nano-TiO2 photocatalyst and experimental studies on the removal of elemental mercury[J]. Proceedings of the CSEE, 2010, 39(29): 37-41. | 42 | RUMAYOR M, FERNANDEZ-MIRANDA N, LOPEZ-ANTON M A, et al. Application of mercury temperature programmed desorption (HgTPD) to ascertain mercury/char interactions[J]. Fuel Processing Technology, 2015, 132: 9-14. | 43 | WEI Y, YU D, TONG S, et al. Effects of H2SO4 and O2 on Hg0 uptake capacity and reversibility of sulfur-impregnated activated carbon under dynamic conditions[J]. Environmental Science & Technology, 2015, 49(3): 1706-1712. |
|