1 | International Energy Agency. World energy outlook 2018: the gold standard of energy analysis[EB/OL].[2018-11]. . | 2 | CHAN C W, LING-CHIN J, ROSKILLY A P. A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilization[J]. Applied Thermal Engineering, 2013, 50: 1257-1273. | 3 | Institution of Engineering and Technology. Profiting from low-grade heat[R]. The Watt Committee on Energy Report, No. 26, | 3 | London, 1994. | 4 | VANCE David, NIMBALKAR Sarchin, THEKDI Arvind, et al. Estimation of and barriers to waste heat recovery from harsh environments in industrial processes[J]. Journal of Cleaner Production, 2019, 222: 539-549. | 5 | KOSMADAKIS George. Estimating the potential of industrial (high-temperature) heat pumps for exploiting waste heat in EU industries[J]. Applied Thermal Engineering, 2019, 156: 287-298. | 6 | MCKENNA Russell. Industrial energy efficiency: interdisciplinary perspectives on the thermodynamics, technical and economic constraints[D]. Bath:University of Bath, 2009. | 7 | PAPAPETROU Michael, KOSMADAKIS George, CIPOLLINA Andrea, et al. Industrial waste heat: estimation of the technically available resource in the EU per industrial sector, temperature level and country[J]. Applied Thermal Engineering, 2018, 138: 207-216. | 8 | KUDER Ralf, BLESL Markus. Technology orientated analysis of the emission reduction potentials in the industrial sector in the EU-27[R]. International Energy Workshop (IEW), Stockholm, Sweden, 2010. | 9 | LI Shijie, HUANG Hongyu, YANG Xixian, et al. Hydrophilic substance assisted low temperature LiOH·H2O based composite thermochemical materials for thermal energy storage[J].Applied Thermal Engineering, 2018, 128: 706-711. | 10 | PARDO P, DEYDIER A, ANXIONNAZ-MINVIELLE Z, et al. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 591-610. | 11 | N’TSOUKPOE Kokouvi Eden, RESTUCCIA Giovanni, SCHMIDT Thomas, et al. The size of sorbents in low pressure sorption or thermochemical energy storage processes[J]. Energy, 2014,77: 983-998. | 12 | ABEDIN Ali H, ROSEN Marc A. A critical review of thermochemical energy storage systems[J]. The Open Renewable Energy Journal, 2011, 4: 42-46. | 13 | KOUSKSOU T, BRUEL P, JAMIL A, et al. Energy storage: applications and challenges[J]. Solar Energy Materials and Solar Cells, 2014, 120: 59-80. | 14 | TATSIDJODOUNG Parfait, LE PIERRES Nolwenn, LUO Lingai. A review of potential materials for thermal energy storage in building applications[J]. Renew Sustain Energy Reviews, 2013, 18: 327-349. | 15 | ISLAM Md Parvez, MORIMOTO Tetsuo. Advances in low to medium temperature non-concentrating solar thermal technology[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2066-2093. | 16 | ZONDAG A H, ESSEN Martijin VAN, BLEIJENDAAL L. An evaluation of the economical feasibility of seasonal sorption heat storage[C]//Proceedings of the 5th International Renewable Energy Storage Conference, Berlin, Germany, 2010: 22-24. | 17 | KRONAUER Andreas, LAVEMANN Eberhard, BRUCKNER Sarah, et al. Mobile sorption heat storage in industrial waste heat recovery[C]//ELSEVIER L.Proceedings of the 12th International Conference on Energy Storage, Lleida, Spain, 2012:16-19. | 18 | STORCH G, HAUER A. Feasibility study for mobile sorption storage in industrial applications[EB/OL].[2013-09-01]. . | 19 | KERSKES Henner, DRUCK Harald. Energetic and economic aspects of seasonal heat storage in single and multifamily houses[C]//Proceedings of the 5th European Solar Thermal Energy Conference, Marseille, France, 2011:20-21. | 20 | CABEZA Luisa F, SOLE Aran, BARRENECHE Camila. Review on sorption materials and technologies for heat pumps and thermal energy storage[J]. Renewable Energy, 2017, 110:3-39. | 21 | NIENBORG Bjorn, GSCHWANDER Stefan, MUNZ Gunther, et al. Life cycle assessment of thermal energy storage materials and components[J]. Energy Procedia, 2018, 155:111-120. | 22 | VISSCHER K. Simulation of thermochemical seasonal storage of solar heat-material selection and optimum performance simulation[C].// Proceedings of the 2nd Workshop Matlab/Simulink for Building Simulation, CSTB, 2004. | 23 | MAMANI V, GUTIERREZ A, USHAK S. Development of low-cost inorganic salt hydrate as a thermochemical energy storage material[J]. Solar Energy Materials and Solar Cells, 2018, 176: 346-356. | 24 | BALES Chris, GANTENBEIN Paul, JAENIG Dagmar, et al. Chemical and sorption storage: the overview[R].IEASHC, Paris, France, 2005. | 25 | N’TSOUKPOE Ke, LIU H, LE PIERRES N, et al. A review on long-term sorption solar energy storage[J]. Renew Sustain Energy Reviews, 2009, 13: 2385-2396. | 26 | 王如竹, 王丽伟, 吴静怡. 吸附式制冷理论与应用[M].北京: 科学出版社, 2007. | 26 | WANG R Z, WANG L W, WU J Y. Theory and application of adsorption refrigeration[M]. Beijing: Science Press, 2007. | 27 | SCAPINO Luca, ZONDAG Herbert A, BAEL Jan VAN, et al. Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 1314-1331. | 28 | YU N, WANG R Z, LU Z S, et al. Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage[J]. Chemical Engineering Science, 2014, 111: 73-84. | 29 | DAWOUD B, VEDDER U, E-H AMER, et al. Non-isothermal adsorption kinetics of water vapour into a consolidated zeolite layer[J]. International Journal of Heat and Mass Transfer, 2007, 50: 2190-2199. | 30 | WU S, LI T X, YAN T, et al. Advanced thermochemical resorption heat transformer for high-efficiency energy storage and heat transformation[J]. Energy, 2019, 175: 1222-1233. | 31 | YAN T, WANG C Y, LI D. Performance analysis of a solid-gas thermochemical composite sorption system for thermal energy storage and energy upgrade[J]. Applied Thermal Engineering, 2019, 150: 512-521. | 32 | YAN T, WANG R Z, LI T X. Experimental investigation on thermochemical heat storage using manganese chloride/ammonia[J]. Energy, 2018, 143: 562-574. | 33 | FITO Jaume, CORONAS Alberto, MAURAN Sylvain, et al. Hybrid system combining mechanical compression and thermochemical storage of ammonia vapor for cold production[J]. Energy Conversion and Management, 2019, 180: 709-723. | 34 | GREKOVA Alexandra, STRELOVA Svetlana, GORDEEVA Larisa, et al. “LiCl/vermiculite-Methanol” as working pair for adsorption heat storage: adsorption equilibrium and dynamics[J]. Energy, 2019, 186:115775. | 35 | GORDEEVA Larisa G, ARISTOV Yuriy I. Composite sorbent of methanol “LiCl in mesoporous silica gel” for adsorption cooling: Dynamic optimization[J]. Energy, 2011, 36: 1273-1279. | 36 | CALABRESE Luigi, BRANCATO Vincenza, PAOLOMBA Valeria, et al. An experimental study on the corrosion sensitivity of metal alloys for usage in PCM thermal energy storages[J]. Renewable Energy, 2019, 138: 1018-1027. | 37 | WANG Gang, XU Chao,WEI Gaosheng, et al. Numerical study of a novel dual-PCM thermal energy storage structure filled with inorganic salts and metal alloy as the PCMs[J]. Energy Procedia, 2019, 158: 4423-4428. | 38 | Jaume COT-GORES, CASTELL Albert, CABEZA Luisa F. Thermochemical energy storage and conversion: a state of the art review of the experimental research under practical conditions[J]. Renew Sustain Energy Reviews, 2012,16: 5207-5224. | 39 | HAUER A, AVEMANN E. Open absorption systems for air conditioning and thermal energy storage[M]//PAKSOY H. Thermal Energy Storage for Sustainable Energy Consumption. Dordrecht: Springer, 2007: 429-444. | 40 | ARISTOV Y. Novel materials for adsorptive heat pumping and storage: screening and nanotailoring of sorption properties[J]. Journal of Chemical Engineering of Japan, 2007, 40: 1139-1153. | 41 | YU N, WANG R Z, WANG L W. Sorption thermal storage for solar energy[J]. Progress in Energy and Combustion Science, 2013, 39: 489-514. | 42 | JAANCHEN J, ACKERMANN D, STACH H,et al. Studies of the water adsorption on Zeolites and modified mesoporous materials for seasonal storage of solar heat[J]. Solar Energy, 2003, 76: 339-344. | 43 | JANCHEN J, ACKERMANN D, WEILER E, et al. Calorimetric investigation on zeolites, AlPO4’s and CaCl2 impregnated attapulgite for thermochemical storage of heat[J]. Thermochimica Acta, 2005, 434: 37-41. | 44 | JIA C X, DAI Y J, WU J Y, et al. Use of compound desiccant to develop high performance desiccant cooling system[J]. International Journal of Refrigeration, 2007, 30: 345-353. | 45 | HENNINGER Stefan K, ERNST Sebastian-Johannes, GORDEEVA Larisa, et al. New materials for adsorption heat transformation and storage[J]. Renewable Energy, 2017, 110: 59-68. | 46 | KNEZ Z, NOVAK Z. Adsorption of water vapor on silica, alumina, and their mixed oxide aerogels[J]. Journal of Chemical &Engineering Data, 2001, 46(4): 858-860. | 47 | Eng-Poh NG, MINTOVA Svetlana. Nanoporous materials with enhanced hydrophilicity and high water sorption capacity[J]. Microporous and Mesoporous Materials, 2008, 114: 1-26. | 48 | CENTINEO Alessio, NGUYEN Huong Giang T, ESPINAL Laura, et al. An experimental and modelling study of water vapour adsorption on SBA-15[J]. Microporous and Mesoporous Materials, 2019, 282: 53-72. | 49 | HONGOIS Stephanie, KUZNIK Frederic, STEVENS Philippe, et al. Development and characterization of a new MgSO4–zeolite composite for long-term thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2011, 95: 1831-1837. | 50 | ZHANG Y N, WANG R Z, LI T X. Thermochemical characterizations of high-stable activated alumina/ LiCl composites with multistage sorption process for thermal storage[J]. Energy, 2018, 156: 240-249. | 51 | BRANCATO Vincenza, GORDEEVA Larisa G, GREKOVA Alexandra D, et al. Water adsorption equilibrium and dynamics of LICL/MWCNT/PVA composite for adsorptive heat storage[J]. Solar Energy Materials and Solar Cells, 2019, 193: 133-140. | 52 | ALLOUHI A, KOUSKSOU T, JAMIL A, et al. Solar driven cooling systems: an updated review[J]. Renew Sustain Energy Reviews, 2015,44:159-181. | 53 | WEBER R, DORER V. Long-term heat storage with NaOH[J]. Vacuum, 2008, 82: 708-716. | 54 | BALES C, JAENING D, GANTENBEIN P, et al. Laboratory prototypes of thermo-chemical and sorption storage units : report B3 of subtask B[R]. IEA, 2007. | 55 | Edem N’TSOUKPOE K, LE PIERRES Nolwenn, LUO Lingai. Numerical dynamic simulation and analysis of a lithium bromide/water long-term solar heat storage system[J]. Energy, 2012, 37: 346-358. | 56 | LIU Hui. Stockage inter-saisonnier d’e′nergie solaire pourl’habitat par absorption[D].Grenoble: Universite′ de Grenoble, 2010. | 57 | KUZNIK Frederic, JOHANNES Kevyn. A review on chemisorption heat storage in low-energy buildings[J]. Energy Procedia, 2014, 57: 2333-2341. | 58 | ALMADHONI K, KHAN S. A review-an optimization of macro encapsulated paraffin used in solar latent heat storage unit[J]. International Journal of Engineering Research & Technology, 2016, 5(1): 729-736. | 59 | PREVOST M, BUGAREL R. Chemical heat pumps: system isopropanol-acetone-hydrogen[C]//Proceedings of the International Conference on Energy Storage, 1980. | 60 | XU Min, CAI Jun, GUO Jiangfeng, et al. Technical and economic feasibility of the isopropanol-acetone-hydrogen chemical heat pump based on a lab-scale prototype[J]. Energy, 2017, 139: 1030-1039. | 61 | PENG Wenping, XU Min, HUAI Xiulan, et al. 3D CFD simulations of acetone hydrogenation in randomly packed beds for an isopropanol-acetone-hydrogen chemical heat pump[J]. Applied Thermal Engineering, 2016, 94: 238-248. | 62 | N’ TSOUKPOE Kokouvi Edem, SCHMIDT Thomas, RAMMELBERG Holger Urs, et al. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage[J]. Applied Energy, 2014, 124: 1-16. | 63 | ESSEN V M VAN, ZONDAG HA, GORES J C, et al. Characterization of MgSO4 hydrate for thermochemical seasonal heat storage[J]. Journal of Solar Energy Engineering, 2009, 131(4): 041014. | 64 | WHITING Gareth T, GRONDIN Didier, STOSIC Dusan, et al. Zeolite–MgCl2 composites as potential long-term heat storage materials: influence of zeolite properties on heats of water sorption[J]. Solar Energy Materials and Solar Cells, 2014,128:289-295. | 65 | MAHON Daniel, CLAUDIO Gianfranco, EAMES Philip C. An experimental investigation to assess the potential of using MgSO4 impregnation and Mg2+ ion exchange to enhance the performance of 13X molecular sieves for interseasonal domestic thermochemical energy storage[J]. Energy Conversion and Management, 2017,150: 870-877. | 66 | OKHRIMENKO L, FAVERGEON L, JOHANNES K, et al. Thermodynamic study of MgSO4-H2O system dehydration at low pressure in view of heat storage[J]. Thermochimica Acta, 2017, 656: 135-143. | 67 | GRINDSTAFF Wyman K, FOGEL Norman. Thermochemistry of cobalt(II) chloride hydrates[J]. Journal of the Chemical Society Dalton Transactions, 1972, 24:4287-4540. | 68 | ANDRE Laurie, ABANADES Stephane, FLAMANT Gilles. Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage[J].Renewable and Sustainable Energy Reviews, 2016, 64: 703-715. | 69 | WONG B. Thermochemical heat storage for concentrated solar power: thermochemical system reactor design for thermal energy storage[C]//Proceedings of Phase II Final Report for the Period, September 30, 2011. | 70 | FAHIM M A, FORD J D. Energy storage using the BaO2-BaO reaction cycle[J]. The Chemical Engineering Journal, 1983, 27: 21-28. | 71 | WANG L W, WANG R Z, OLIVEIRA R G. A review on adsorption working pairs for refrigeration[J]. Renew Sustain Energy Reviews, 2009, 13: 518-534. | 72 | LI Shijie, HUANG Hongyu, LI Jun, et al. The effect of 3D carbon nanoadditives on lithium hydroxide monohydrate based composite materials for highly efficient low temperature thermochemical heat storage[J]. RSC Adv., 2018, 8: 81-99. | 73 | SUTTON R J, JEWELL E, ELVINS J, et al. Characterising the discharge cycle of CaCl2 and LiNO3 hydrated salts within a vermiculite composite scaffold for thermochemical storage[J]. Energy and Buildings, 2018, 162:109-120. | 74 | OVOSHCHNIKOV D S, GLAZNEV I S, ARISTOV Y I. Water sorption by the calcium chloride/silica gel composite: the accelerating effect of the salt solution present in pores[J]. Kinetics and Catalysis, 2011, 52(4): 620-628. | 75 | KIM Seon Tae, Junichi RYU, KATO Yukitaka. Reactivity enhancement of chemical materials used in packed bed resctor of chemical heat pump[J]. Progress in Nuclear Energy, 2011, 53(7): 1027-1033. | 76 | YAN T, WANG R Z, LI T X, et al. A review of promising candidate reactions for chemical heat storage[J]. Renewable and Sustainable Energy Reviews, 2015, 43:13-31. |
|