1 | DU M, MAO N, RUSSELL S J. Control of porous structure in flexible silicone aerogels produced from methyltrimethoxysilane (MTMS): the effect of precursor concentration in sol-gel solutions[J]. Journal of Materials Science, 2016, 51(2): 719-731. | 2 | SHUIT S H, NG E P, TAN S H. A facile and acid-free approach towards the preparation of sulphonated multi-walled carbon nanotubes as a strong protonic acid catalyst for biodiesel production[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 52(5): 100-108. | 3 | MORISHIGE K. Adsorption hysteresis in ordered mesoporous silicas[J]. Adsorption-Journal of the International Adsorption Society, 2008, 14(2/3): 157-163. | 4 | WAHAB M A, HUSSAIN H, HE C. Photoactive perylenediimide-bridged silsesquioxane functionalized periodic mesoporous organosilica thin films (PMO-SBA15): synthesis, self-assembly, and photoluminescent and enhanced mechanical properties[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2009, 25(8): 4743-4750. | 5 | KUMAR N, KONOVA P M, NAYDENOY A, et al. Synthesis of novel Ag modified MCM-41 mesoporousmolecular sieve and beta zeolite catalysts for ozone decomposition at ambient temperature[J]. Catalysis Letters, 2004, 98(1): 57-60. | 6 | FUJITA S, INAGAKI S. Self-organization of organosilica solids with molecular-scale and mesoscale periodicities [J]. Chemistry of Materials, 2008, 20(3): 891-908. | 7 | ELHAMIFAR D, SHABANI A. ChemInform abstract: manganese-containing periodic mesoporous organosilica with ionic-liquid framework (Mn@PMO‐IL): a powerful, durable, and reusable nanocatalyst for the biginelli reaction[J]. Chem. Inform., 2015, 45(35): 3212-3217. | 8 | CIRIMINNA R, DEMMA C, PIERA, et al. Catalysis via sol-gel acid silicas: an important chemical technology for 2nd generation biorefineries[J]. Chem. Cat. Chem., 2014, 6(11): 3053-3059. | 9 | KARIMI B, ROSTAMI F B, KHORASANI M, et al. Selective oxidation of alcohols with hydrogen peroxide catalyzed bytungstate ions (WO4- ) supported on periodic mesoporous organosilica with imidazolium frameworks (PMO-IL)[J]. Tetrahedron, 2014, 70(36): 6114-6119. | 10 | BABAK K, ELHAMIFAR D, YARI O, et al. Synthesis and characterization of alkyl-imidazolium-based periodic mesoporous organosilicas: a versatile host for the immobilization of perruthenate (RuO4-) in the aerobic oxidation of alcohols[J]. Chemistry-A European Journal, 2012, 18(42):1 3520-13530. | 11 | POLSHETTIWAR V, VARMA R. Pd-N-heterocyclic carbene (NHC) organic silica: synthesis and application in carbon-carbon coupling reactions[J]. Tetrahedron, 2008, 64(20): 4637-4643. | 12 | XIONG J, ZHU W, DING W, et al. Phosphotungstic acid immobilized on ionic liquid-modified SBA-15: effcient hydrophobic heterogeneous catalyst for oxidative desulfurization in fuel[J]. Industrial & Engineering Chemistry Research, 2014, 53(51): 19895-19904. | 13 | PAUN C, STEREC C, COMAN S M, et al. Acylation of sulfonamines using silica grafted 1-butyl-3-(3-triethoxysilylpropyl)-4,5-dihydroimidazolium ionic liquids as catalysts[J]. Catalysis Today, 2008, 131(1): 98-103. | 14 | KARIMI B, ELHAMIFAR D, CLARK J H, et al. Ordered mesoporous organosilica with ionic-liquid framework: an efficient and reusable support for the palladium-catalyzed Suzuki-Miyaura coupling reaction in water[J]. Chemistry-A European Journal, 2010, 16(27): 8047-8053. | 15 | POLSHETTIWAR V, HESEMANN P, JOEL J E. Moreau silica hybrid material containing Pd—NHC complex as heterogeneous catalyst for Mizoroki—Heck reactions[J]. ChemInform, 2007, 48(31): 5363-5366. | 16 | 孙福强, 梅文杰, 崔英德. 微波辅助合成5-[4-(4-溴代丁氧基)苯基]-10,15,20-三对甲氧基苯基卟啉[J]. 化工进展, 2014, 33(5):1296-1299. | 16 | SUN Fuqiang, MEI Wenjie, CUI Yingde. Microwave-assisted synthesis of 5-[4-(4-bromobutoxy)phenyl]-10,15,20-tri-methoxyphenyporphyrin[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1296-1299. | 17 | 段晓磊, 迟骋, 朱丽君, 等. 固载化离子液体催化酯化反应研究进展[J]. 化工进展, 2015, 34 (12): 4238-4247. | 17 | DUAN Xiaolei, CHI Cheng, ZHU Lijun, et al. Progress in the application of immobilized ionic liquids in esterification reactions[J]. Chemical Industry and Engineering Progress, 2015, 34(12): 4238-4247. | 18 | KONDO Y, IZAWA S, KUSABAYASHI S. Menschutkin reactions of N-methylimidazole and of N-methylbenzimidazole with methyl iodide in acetonitrile methanol, family-dependent and family-independent properties[J]. Cheminform, 1989, 20(9): 1925-1928. | 19 | GUILLEN E, HIRSCHBERG W, CARLOS B. Transport of adenosine triphosphate into endoplasmic reticulum proteoliposomes[J]. Biochemistry, 1995, 34(16): 5472-5476. | 20 | KRONICK P L, FUOOS R M, RAYMOND M. Quaternization kinetics. II. Pyridine and 4-picoline in propylene carbonate[J]. J. Am. Chem. Soc., 1955, 77(23): 6114-6120. | 21 | 刘劲松, 曾宪诚. 连续型季铵化反应的热动力学研究[J]. 高等学校化学学报, 1993, 26(8 ): 1207-1209. | 21 | LIU Jingsong, ZENG Xiancheng. Thermokinetic research of consecutive quaternizations[J]. Chemical Journal of Chinese Universities, 1994, 15(8): 1207-1209. | 22 | LOUPY A, ANDRE. Microwaves in organic synthesis[M]. Germany: Wiley-VCH Verlag GmbH, 2012. | 23 | CVENGROS J, TOMA S, MARQUE S, et al. Synthesis of phosphonium salts under microwave activation leaving group and phosphine substituents effects[J]. Canadian Journal of Chemistry, 2004, 82(9):1365-1371. | 24 | REGINA G L, GATTI V, PISCITELLI F, et al. Open vessel and cooling while heating microwave-assisted synthesis of pyridinyl N-aryl hydrazones[J]. Cheminform, 2011, 13(1): 2-6. | 25 | ROSANA M R, TAO Y, STIEGMAN, et al. On the rational design of microwave-actuated organic reactions[J]. Chemical Science, 2012, 3(4): 1240-1244. |
|