1 |
HABIBI Y, LUCIA L A, ROJAS O J. Cellulose nanocrystals: chemistry, self-assembly, and applications[J]. Chemical Reviews, 2010, 110(6): 3479-3500.
|
2 |
TAYLOR N G, TURNER S R. Cellulose synthesis in the arabidopsis secondary cell wall[M]//Cellulose: Molecular and Structural Biology. Springer, Dordrecht, 2007: 49-61.
|
3 |
PANDEY J K, AHN S H, LEE C S, et al. Recent advances in the application of natural fiber based composites[J]. Macromolecular Materials and Engineering, 2010, 295(11): 975-989.
|
4 |
BONDESON D, MATHEW A, OKSMAN K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis[J]. Cellulose, 2006, 13(2): 171-180.
|
5 |
ROY D, SEMSARILAR M, GUTHRIE J T, et al. Cellulose modification by polymer grafting: a review[J]. Chemical Society Reviews, 2009, 38(7): 2046-2064.
|
6 |
SEN S, MARTIN J D, ARGYROPOULOS D S. Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(8): 858-870.
|
7 |
MANTIA F P LA, MORREALE M. Green composites: a brief review[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(6): 579-588.
|
8 |
XIE Z, KIM J P, CAI Q, et al. Synthesis and characterization of citrate-based fluorescent small molecules and biodegradable polymers[J]. Acta Biomaterialia, 2017, 50: 361-369.
|
9 |
SHI L, YANG J H, ZENG H B, et al. Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores[J]. Nanoscale, 2016, 8(30): 14374-14378.
|
10 |
NGU T A, LI Z. Phosphotungstic acid-functionalized magnetic nanoparticles as an efficient and recyclable catalyst for the one-pot production of biodiesel from grease via esterification and transesterification[J]. Green Chemistry, 2014, 16(3): 1202-1210.
|
11 |
LIU Y, WANG H, YU G, et al. A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid[J]. Carbohydrate Polymers, 2014, 110: 415-422.
|
12 |
LU Q L, CAI Z H, LIN F C, et al. Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 2165-2172.
|
13 |
YANG Z, ZHAO L, LEI Z. Quaternary ammonium salt functionalized methoxypolyethylene glycols-supported phosphotungstic acid catalyst for the esterification of carboxylic acids with alcohols[J]. Catalysis Letters, 2014, 144(4): 585-589.
|
14 |
WANG H X, YANG Z, LIU Z G, et al. Facile preparation of bright-fluorescent soft materials from small organic molecules[J]. Chemistry–A European Journal, 2016, 22(24): 8096-8104.
|
15 |
王莉, 吕婷, 阮枫萍, 等. 水热法制备的荧光碳量子点[J]. 发光学报, 2014, 35(6): 706-709.
|
|
WANG L, LV T, RUAN F P, et al. Synthesis of photoluminescentcarbon nanoparticles by hydrothermal method[J]. Chinese Journal of Luminescence, 2014, 35(6): 706-709.
|
16 |
RODIONOVA G, LENES M, Ø ERIKSEN, et al. Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications[J]. Cellulose, 2011, 18(1): 127-134.
|
17 |
BALÁŽ P. Mechanochemistry in minerals engineering[M]//Mechanochemistry in Nanoscience and Minerals Engineering. Springer, Berlin, Heidelberg, 2008: 257-296.
|
18 |
BEYER M K, CLAUSEN-SCHAUMANN H. Mechanochemistry: the mechanical activation of covalent bonds[J]. Chemical Reviews, 2005, 105(8): 2921-2948.
|
19 |
TANG H, BUTCHOSA N, ZHOU Q. A transparent, hazy, and strong macroscopic ribbon of oriented cellulose nanofibrils bearing poly (ethylene glycol)[J]. Advanced Materials, 2015, 27(12): 2070-2076.
|
20 |
黄彪, 卢麒麟, 唐丽荣. 纳米纤维素的制备及应用研究进展[J]. 林业工程学报, 2016, 1(5): 1-9.
|
|
HUANG B, LU Q L, TANG L R. Research progress of nanocellulose manufacture and application[J]. Journal of Forestry Engineering, 2016, 1(5): 1-9.
|
21 |
周素坤, 毛健贞, 许凤. 微纤化纤维素的制备及应用[J]. 化学进展, 2014, 26(10): 1752-1762.
|
|
ZHOU S K, MAO J Z, XU F. Preparation and applications of microfibrillated cellulose[J]. Progress in Chemistry, 2014, 26(10): 1752-1762.
|
22 |
IBRAHIM M M, EL-ZAWAWY W K. Extraction of cellulose nanofibers from cotton linter and their composites[M]//Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg, 2015: 145-164.
|
23 |
RAMBABU N, PANTHAPULAKKAL S, SAIN M, et al. Production of nanocellulose fibers from pinecone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films[J]. Industrial Crops and Products, 2016, 83: 746-754.
|
24 |
DEEPA B, ABRAHAM E, CORDEIRO N, et al. Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study[J]. Cellulose, 2015, 22(2): 1075-1090.
|
25 |
OUN A A, RHIM J W. Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: effect of isolation method[J]. Materials Letters, 2016, 168: 146-150.
|
26 |
SEALEY J E, SAMARANAYAKE G, TODD J G, et al. Novel cellulose derivatives. IV. Preparation and thermal analysis of waxy esters of cellulose[J]. Journal of Polymer Science Part B: Polymer Physics, 1996, 34(9): 1613-1620.
|
27 |
J A Á RAMÍREZ, FORTUNATI E, KENNY J M, et al. Simple citric acid-catalyzed surface esterification of cellulose nanocrystals[J]. Carbohydrate Polymers, 2017, 157: 1358-1364.
|