[1] EVAN J Granite, HENRY W Pennline. Constance senior. Mercury control for coal-derived gas streams[M]. Frankfurt:Wiley-VCH Verlag GmbH & Co. KGaA, 2015:51-66. [2] 王泉海. 煤燃烧过程中汞排放及其控制的实验及机理研究[D]. 武汉:华中科技大学, 2006. WANG Quanhai. Experimental and mechanism study on mercury emission and control during coal combustion[D]. Wuhan:Huazhong University of Science & Technology, 2006. [3] 刘永卓, 郭庆杰, 田红景. 煤化学链转化技术研究进展[J]. 化工进展, 2014, 33(6):1357-1364. LIU Yongzhuo, GUO Qingjie, TIAN Hongjing. Advance in the coal chemical-looping conversion technology[J]. Chemical Industry and Engineering Progress, 2014, 33(6):1357-1364. [4] 程煜. 铁基载氧体/煤化学链气化反应及动力学研究[D]. 青岛:青岛科技大学, 2013. CHENG Yu. Chemical-looping gasification reaction characteristics and kinetic studies of coal and Fe-based oxygen carriers[D]. Qingdao:Qingdao University of Science & Technology, 2013. [5] JUAN Adanez, ALBERTO Abad, FRANCISCO Garcia-Labiano, et al. Progress in chemical-looping combustion and reforming technologies[J]. Progress in Energy and Combustion Science, 2012, 38(2):215-282. [6] YANG Hongqun, XU Zhenghe, FAN Maohong, et al. Progress in carbon dioxide separation and capture:a review[J]. Journal of Environmental Sciences, 2008, 20(1):14-27. [7] FAN Liangshi, ZENG Liang, WANG William, et al. Chemical looping processes for CO2 capture and carbonaceous fuel conversion prospect and opportunity[J]. Energy Environ & Science, 2012, 5:7254-7280. [8] 史晓斐, 杨思宇, 钱宇. 化学链技术在煤炭清洁高效利用中的研究进展[J]. 化工学报, 2018, 69(12):4931-4946. SHI Xiaofei, YANG Siyu, QIAN Yu. Chemical looping technology for clean and highly efficient coal processes[J]. CIESC Journal, 2018, 69(12):4931-4946. [9] MENDIARA T, IZQUIERDO M T, ABAD A, et al. Mercury release and speciation in chemical looping combustion of coal[J]. Energy & Fuels, 2014, 28(4):2786-2794. [10] 张志越, 毛琳, 孙佳兴, 等. 温度对载氧体还原过程中汞的析出特性及形态分布的影响[J]. 化工进展, 2018, 37(3):1187-1193. ZHANG Zhiyue, MAO Lin, SUN Jiaxing, et al. Characterization of mercury releasing during reduction of oxygen carriers with coal in chemical looping combustion[J]. Chemical Industry and Engineering Progress, 2018, 37(3):1187-1193. [11] PéREZ Vega Raúl, ADáNEZ Rubio Inaki, GAYáN Pilar, et al. Sulphur, nitrogen and mercury emissions from coal combustion with CO2 capture in chemical looping with oxygen uncoupling (CLOU)[J]. International Journal of Greenhouse Gas Control, 2016, 46:28-38. [12] LI Jihong, LIN Changfeng, QIN Wu, et al. Synergetic effect of mercury adsorption on the catalytic decomposition of CO over perfect and reduced Fe2O3 [001] Surface[J]. Acta Physico-Chimica Sinica, 2016, 32(11):2717-2723. [13] ZHANG Junjiao, QIN Wu, DONG Changqing, et al. Density functional theory study of elemental mercury adsorption on Fe2O3 [104] and it's effect on carbon deposit during chemical looping combustion[J]. Energy & Fuels, 2016, 30(4):3413-3418. [14] GUO Pan, GUO Xin, ZHENG Chuguang. Roles of γ-Fe2O3 in fly ash for mercury removal:results of density functional theory study[J]. Applied Surface Science, 2010, 256(3):6991-6996. [15] JUNG Ji Eun, GEATCHES Lesley Dawn, LEE Kyoungjin, et al. First-principles investigation of mercury adsorption on the α-Fe2O3(1102) surface[J]. The Journal of Physical Chemistry C, 2015, 119(47):26512-26518. [16] GALBREATH Kevin C, ZYGRLICKE Christopher J, TIBBETTS James E, et al. Effects of NOx, α-Fe2O3, γ-Fe2O3, and HCl on mercury transformations in a 7-kW coal combustion system[J]. Fuel Processing Technology, 2005, 86(4):429-448. [17] 万奇顺. 煤灰对载氧体的煤焦化学链气化反应特性及形貌结构影响研究[D]. 青岛:青岛科技大学, 2017. WAN Qishun. Study of the effect of coal ash on the reaction characteristic and morphology structure of oxygen carrier in chemical looping gasification with coal char[D]. Qingdao:Qingdao University of Science & Technology, 2017. [18] U. S. EPA. Standard test method for mercury from coal-fired stationary sources (ontario hydro method):ASTM D6784-02[S]. Philadelphia:American Society for Testing and Materials International, 1999. |