[1] 常威. 生活垃圾焚烧飞灰的水洗及资源化研究[D]. 杭州:浙江大学, 2016. CHANG W. Study on washing and recycling of MSWI fly ash[D]. Hangzhou:Zhejiang University, 2016. [2] 熊祖鸿, 范根育, 鲁敏, 等. 垃圾焚烧飞灰处置技术研究进展[J]. 化工进展, 2013, 32(7):1678-1684. XIONG Z H, FAN G Y, LU M, et al. Treatment technologies of municipal solid waste incinerator fly ash:a review[J]. Chemical Industry and Engineering Progress, 2013, 32(7):1678-1684. [3] 李建新, 张美琴, 严建华, 等. 垃圾焚烧残余物资源化利用途径分析[J]. 热力发电, 2005(12):55-58. LI J X, ZHANG M Q, YAN J H, et al. Analysis on the ways of resource utilization of waste incineration residues[J]. Thermal Power Generation, 2005(12):55-58. [4] LAM C K. Utilization of municipal solid waste incineration ash in Portland cement clinker[J]. Clean Technologies & Environmental Policy, 2011, 13(4):607-615. [5] 蒋建国, 赵振振, 王军, 等. 焚烧飞灰水泥固化技术研究[J]. 环境科学学报, 2006(2):230-235. JIANG J G, ZHAO Z Z, WANG J, et al. Study on cement solidification technology in treating with fly ash[J]. Journal of Environmental Sciences, 2006(2):230-235. [6] 施惠生, 袁玲. 垃圾焚烧飞灰胶凝活性和水泥对其固化效果的研究[J]. 硅酸盐学报, 2003(11):1021-1025. SHI H S, YUAN L. Cementitious reactivity of municipal solid waste incineration fly ash and immobilization effect by cement[J]. Journal of the Chinese Ceramic Society, 2003(11):1021-1025. [7] ALBA N, VÁZQUEZ E, GASSÓ S, et al. Stabilization/solidification of MSW incineration residues from facilities with different air pollution control systems. Durability of matrices versus carbonation[J]. Waste Management, 2001, 21(4):313-323. [8] SAHU S, HAVLICA J, TOMKOVÁ V, et al. Hydration behaviour of sulphoaluminate belite cement in the presence op various Calcium sulphates[J]. Thermochimica ACTA, 1991, 175(1):45-52. [9] 李克亮. 碱激发水泥固化重金属和放射性金属分析[J]. 建筑材料学报, 2013(2):310-314. LI K L. Solidification analysis of heavy metals and radioactive metal by alkali-activated cement[J]. Journal of Building Materials, 2013(2):310-314. [10] 李长成, 姚燕, 崔琪, 等. 改性碱激发水泥固化处置模拟放射性焚烧灰[J]. 硅酸盐学报, 2010(7):1215-1219. LI C C, YAO Y, CUI Q, et al. Solidification and disposal of simulated radioactive incineration ash by modified alkali-activated cement[J]. Journal of the Chinese Ceramic Society, 2010(7):1215-1219. [11] BLISSETT R S, ROWSON N A. A review of the multi-component utilisation of coal fly ash[J]. Fuel, 2012, 97(7):1-23. [12] 施惠生, 袁玲. 焚烧飞灰水泥固化体的安全性评价[J]. 同济大学学报(自然科学版), 2005, 33(3):326-329. SHI H S, YUAN L. Safety assessment for municipal solid wastes incineration fly ashes-cement solidification body[J]. Journal of Tongji University (Natural Science), 2005, 33(3):326-329. [13] 郭晓潞, 施惠生, 徐名凤. CFA基地聚合物协同处置MSWIFA及其安全性研究[J]. 粉煤灰综合利用, 2013(6):14-17, 23. GUO X L, SHI H S, XU M F. Co-disposal of municipal solid waste incineration fly ash (MSWIFA) by high calcium fly Ash (CFA) geopolymer and its security[J]. Fly Ash Comprehensive Utilization, 2013(6):14-17, 23. [14] LIU W, HOU H, ZHANG C H, et al. Feasibility study on solidification of municipal solid waste incinerator fly ash with circulating fluidized bed combustion coal fly ash[J]. Waste Management & Research, 2009, 27(3):258-266. [15] PALOMO A, GRUTZECK M W, BLANCO M T. Alkali-activated fly ashes:a cement for the future[J]. Cement & Concrete Research, 1999, 29(8):1323-1329. [16] 郭晓潞, 施惠生. 高钙粉煤灰地聚合物固化/稳定重金属的试验研究[J]. 土木建筑与环境工程, 2013, 35(2):124-128. GUO X L, SHI H S. Experimental analysis high-calcium fly ash geopolymers solidification/stablization of heavy metals[J]. Journal of Civil, Architectural & Environmental Engineering, 2013, 35(2):124-128. [17] 彭晖, 李树霖, 蔡春声, 等. 偏高岭土基地质聚合物的配合比及养护条件对其力学性能及凝结时间的影响研究[J]. 硅酸盐通报, 2014, 33(11):2809-2817. PENG H, LI S L, CAI C S, et al. Study on effect of mix and curing conditions on the mechanical properties and setting time of metakaolin-based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(11):2809-2817. [18] JIN M, ZHENG Z, YE S, et al. Resistance of metakaolin-MSWI fly ash based geopolymer to acid and alkaline environments[J]. Journal of Non-Crystalline Solids, 2016, 450:116-122. [19] 袁正璞, 李新颖, 陈泉源, 等. 垃圾焚烧飞灰合成地聚物及重金属稳定化效果[J]. 环境工程, 2012(6):91-94. YUAN Z P, LI X Y, CHEN Q Y, et al. Geopolymerisation of municipal solid waste incineration fly ash and solidification of heavy metal[J]. Environmental Engineering, 2012(6):91-94. [20] 金漫彤, 董海丽, 楼敏晓, 等. 土壤聚合物固化飞灰与水泥固化的比较研究[J]. 硅酸盐通报, 2008, 27(5):904-908. JIN M T, DONG H L, LOU M X, et al. Research into comparison between geopolymer solidification fly ash and cement solidification fly ash[J]. Bulletin of the Chinese Ceramic Society, 2008, 27(5):904-908. [21] 金漫彤, 邵江平, 黄彩菊, 等. 地聚物对固化焚烧飞灰的研究[J]. 浙江工业大学学报, 2011, 39(3):241-246. JIN M T, SHAO J P, HUANG C J, et al. Study on solidification for MSWI fly ash with geopolymer[J]. Journal of Zhejiang University of Technology (Social Science), 2011, 39(3):241-246. [22] TEMUUJIN J, RICKARD W, LEE M, et al. Preparation and thermal properties of fire resistant metakaolin-based geopolymer-type coatings[J]. Journal of Non-Crystalline Solids, 2011, 357(5):1399-1404. [23] SOUTSOS M, BOYLE A P, VINAI R, et al. Factors influencing the compressive strength of fly ash based geopolymers[J]. Construction & Building Materials, 2016, 110:355-368. [24] HE J, ZHANG J, YU Y, et al. The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture:a comparative study[J]. Construction & Building Materials, 2012, 30(5):80-91. [25] HE J, JIE Y, ZHANG J, et al. Synthesis and characterization of red mud and rice husk ash-based geopolymer composites[J]. Cement & Concrete Composites, 2013, 37(1):108-118. [26] GENG J, ZHOU M, ZHANG T, et al. Comparison of red mud and coal gangue blended geopolymers synthesized through thermal activation and mechanical grinding preactivation[J]. Construction and Building Materials, 2017, 153:185-192. [27] GENG J, ZHOU M, ZHANG T, et al. Preparation of blended geopolymer from red mud and coal gangue with mechanical co-grinding preactivation[J]. Materials & Structures, 2017, 50(2):109. [28] YE N, CHEN Y, YANG J, et al. Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system[J]. Journal of Hazardous Materials, 2016, 318:70-78. [29] 杨家宽, 陈烨, 叶楠, 等. 一种赤泥与生活垃圾焚烧飞灰的协同处置方法:CN105299657A[P]. 2015-11-03. YANG J K, CHEN Y, YE N, et al. A method for coordinating disposal of red mud and domestic waste incineration fly ash:CN105299657A[P]. 2015-11-03. [30] REDDY M S, DINAKAR P, RAO B H. A review of the influence of source material's oxide composition on the compressive strength of geopolymer concrete[J]. Microporous & Mesoporous Materials, 2016, 234:12-23. [31] PHOO-NGERNKHAM T, MAEGAWA A, MISHIMA N, et al. Effects of Sodium hydroxide and Sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer[J]. Construction & Building Materials, 2015, 91:1-8. [32] HUSEIEN G F, MIRZA J, ISMAIL M, et al. Influence of different curing temperatures and alkali activators on properties of GBFS geopolymer mortars containing fly ash and palm-oil fuel ash[J]. Construction & Building Materials, 2016, 125:1229-1240. [33] HUSEIEN G F, MIRZA J, ISMAIL M, et al. Effect of metakaolin replaced granulated blast furnace slag on fresh and early strength properties of geopolymer mortar[J]. AIN Shams Engineering Journal, 2018, 9(4):1557-1566. [34] ISMAIL I, BERNAL S A, PROVIS J L, et al. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash[J]. Cement & Concrete Composites, 2014, 45(1):125-135. [35] ZHAO X, LIU X, YIN H, et al. Intermediate-calcium based cementitious materials prepared by MSWI fly ash and other solid wastes:hydration characteristics and heavy metals solidification behavior[J]. Journal of Hazardous Materials, 2018, 349:262-271. [36] 杨恒, 倪文, 马旭明, 等. 胶结充填采矿协同资源化利用垃圾焚烧飞灰固化机理研究[J]. 金属矿山, 2018(3):196-200. YANG H, NI W, MA X M, et al. Study on the mechanism of synergistic utilization of fly ash from solid waste incineration by cemented filling mining[J]. Metal Mine, 2018(3):196-200. [37] 周欢. 碱矿渣水泥固化城市生活垃圾焚烧飞灰效率研究[D]. 重庆:重庆大学, 2013. ZHOU H. Study on the efficiency of municipal solid waste incineration fly ash by alkali-activated slag cement[D]. Chongqing:Chongqing University, 2013. [38] 王珂, 倪文, 张思奇, 等. 垃圾焚烧飞灰-矿渣基胶凝体系及固镉研究[J]. 有色金属工程, 2018, 8(5):119-123. WANG K, NI W, ZHANG S J, et al. MSWI fly ash-slag cementing system and cadmium solidification[J]. Nonferrous Metals Engineering, 2018, 8(5):119-123. [39] BESCO S, BRISOTTO M, GIANONCELLI A, et al. Processing and properties of polypropylene-based composites containing inertized fly ash from municipal solid waste incineration[J]. Journal of Applied Polymer Science, 2013, 130(6):4157-4164. [40] BESCO S, BOSIO A, BRISOTTO M, et al. Structural and mechanical characterization of sustainable composites based on recycled and stabilized fly ash[J]. Materials, 2014, 7(8):5920-5933. [41] GOH C K, VALAVAN S E, LOW T K, et al. Effects of different surface modification and contents on municipal solid waste incineration fly ash/epoxy composites[J]. Waste Management, 2016, 58:309-315. [42] PHOO-NGERNKHAM T, CHINDAPRASIRT P, SATA V, et al. The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature[J]. Materials & Design, 2014, 55(6):58-65. [43] LI X, ZHOU Q, ZHOU Y, et al. Stabilization of heavy metals in MSWI fly ash using silica fume[J]. Waste Management, 2014, 34(12):2494-2504. [44] MU Y, SAFFARZADEH A, SHIMAOKA T. Influence of ignition of waste fishbone on enhancing heavy metal stabilization in municipal solid waste incineration (MSWI) fly ash[J]. Journal of Cleaner Production, 2018, 189:396-405. [45] 姜玲玲, 党文达, 钟红春, 等. 生活垃圾焚烧厂飞灰无害化处理技术的应用[J]. 环境卫生工程, 2013, 21(5):45-46, 48. JIANG L L, DANG W D, ZHONG H C, et al. Application of fly ash hazard-free treatment technology in domestic waste incineration plant[J]. Environmental Sanitation Engineering, 2013, 21(5):45-46, 48. |