化工进展 ›› 2020, Vol. 39 ›› Issue (3): 815-823.DOI: 10.16085/j.issn.1000-6613.2019-1076
收稿日期:
2019-07-08
出版日期:
2020-03-05
发布日期:
2020-04-03
通讯作者:
高从堦
作者简介:
祝海涛(1990—),男,博士,工程师,研究方向为膜分离及水处理。E-mail:基金资助:
Haitao ZHU1,2(),Bo YANG2,Congjie GAO1()
Received:
2019-07-08
Online:
2020-03-05
Published:
2020-04-03
Contact:
Congjie GAO
摘要:
电渗析是一种利用离子交换膜和电势差从溶液及其他不带电组分中分离出离子的物质分离过程,该技术具有适应性强、预处理简单、能耗低、环境污染小等优点,被广泛应用于化工、生物等领域的分离纯化过程。本文主要介绍了用于电渗析分离过程的6种传质模型,总结了各模型的优势及存在的问题,指出限制电渗析技术进一步发展的主要原因是对包含物质传递、浓差极化、流体流动行为、电解质溶液-膜平衡等复杂现象的电渗析过程进行理论和实验研究难度大,而传质模型化为电渗析分离过程的物质传递研究提供了一条有效途径,有助于深入研究电渗析过程中物质的传递机理,准确预测分离性能并导向性优化电渗析结构设计和操作工艺。并且提出未来电渗析传质模型的研究方向是结合经验方程或传质系数进一步优化传质模型,并采用仿真工具模拟传质过程,提高模型的准确性和普适性。
中图分类号:
祝海涛,杨波,高从堦. 电渗析过程传质模型的研究进展[J]. 化工进展, 2020, 39(3): 815-823.
Haitao ZHU,Bo YANG,Congjie GAO. Research progress on mass transfer models for electrodialysis process[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 815-823.
1 | HAN L,GALIER S,R-D BALMANN H.A phenomenological model to evaluate the performances of electrodialysis for the desalination of saline water containing organic solutes[J].Desalination,2017,422:17-24. |
2 | 包申旭,张一敏,刘涛,等.电渗析处理石煤提钒废水[J].中国有色金属学报,2010,20(7):1440-1445. |
BAO S X,ZHANG Y M,LIU T,et al.Electrodialytic treatment of wastewater produced in vanadium extraction from stone coal[J].The Chinese Journal of Nonferrous Metals,2010,20(7):1440-1445. | |
3 | XU T,HUANG C.Electrodialysis-based separation technologies: a critical review[J].AIChE Journal,2008,54(12):3147-3159. |
4 | CERVA M L,LIBERTO M D,GURRERI L,et al.Coupling CFD with a one-dimensional model to predict the performance of reverse electrodialysis stacks[J].Journal of Membrane Science,2017,541:595-610. |
5 | DEMEKHIN E A,NIKITIN N V,SHELISTOV V S.Direct numerical simulation of electrokinetic instability and transition to chaotic motion[J].Physics of Fluids,2013,25(12):122001. |
6 | FIDALEO M,MORESI M.Optimal strategy to model the electrodialytic recovery of a strong electrolyte[J].Journal of Membrane Science,2005,260(1/2):90-111. |
7 | MAREEV S A,BUTYLSKII D Y,PISMENSKAYA N D,et al.Chronopotentiometry of ion-exchange membranes in the overlimiting current range. Transition time for a finite-length diffusion layer: modeling and experiment[J].Journal of Membrane Science,2016,500:171-179. |
8 | NAKAYAMA A,SANO Y,BAI X,et al.A boundary layer analysis for determination of the limiting current density in an electrodialysis desalination[J].Desalination,2017,404:41-49. |
9 | ZALTZMAN B,RUBINSTEIN I.Electro-osmotic slip and electroconvective instability[J].Journal of Fluid Mechanics,2007,579:173-226. |
10 | H-I JEONG,KIM H J,KIM D-K.Numerical analysis of transport phenomena in reverse electrodialysis for system design and optimization[J].Energy,2014,68:229-237. |
11 | PHAM V S,LI Z,LIM K M,et al.Direct numerical simulation of electroconvective instability and hysteretic current-voltage response of a permselective membrane[J].Physical Review E,2012,86(4):046310. |
12 | VOLGIN V M,DAVYDOV A D.Ionic transport through ion-exchange and bipolar membranes[J].Journal of Membrane Science, 2005,259 (1/2):110-121. |
13 | ZOURMAND Z,FARIDIRAD F,KASIRI N,et al.Mass transfer modeling of desalination through an electrodialysis cell[J].Desalination,2015,359:41-51. |
14 | BAWORNRUTTANABOONYA K,DEVAHASTIN S,YOOVIDHYA T,et al.Mathematical modeling of transport phenomena and quality changes of fish sauce undergoing electrodialysis desalination[J].Journal of Food Engineering,2015,159:76-85. |
15 | FIDALEO M,MORESI M,CAMMAROTO A,et al.Modelling of soy sauce desalting by electrodialysis[J].Food and Bioprocess Technology,2012,6(7):1681-1695. |
16 | NEZUNGAI C D,MAJOZI T.Optimum synthesis of an electrodialysis framework with a background process—Ⅰ: A novel electrodialysis model[J].Chemical Engineering Science,2016,147:180-188. |
17 | ROHMAN F S,OTHMAN M R,AZIZ N.Modeling of batch electrodialysis for hydrochloric acid recovery[J].Chemical Engineering Journal,2010,162(2):466-479. |
18 | HAN L,GALIER S,R-D BALMANN H.Transfer of neutral organic solutes during desalination by electrodialysis: influence of the salt composition[J].Journal of Membrane Science,2016,511:207-218. |
19 | WANG Y,WANG A,ZHANG X,et al.The concentration, resistance, and potential distribution across a cation exchange membrane in 1∶2 (Na2SO4) type aqueous solution[J].Desalination,2012,284:106-115. |
20 | ZABOLOTSKII V I,SHARAFAN M V,SHEL’DESHOV N V.The dissociation rate of water molecules in systems with cation- and anion-exchange membranes[J].Russian Journal of Electrochemistry,2012,48(5):550-555. |
21 | MAIGROT E,SABATES J.Apparat zur Läuterung von Zuckersäften mittels Elektrizität:Germ.Pat. Nr. 50443[P].1890. |
22 | GREBENYUK V D,GREBENYUK O V.Electrodialysis: from an idea to realization[J].Russian Journal of Electrochemistry,2002,38(8):806-809. |
23 | 刘骆峰,张雨山,黄西平,等.淡化后浓海水化学资源综合利用技术研究进展[J].化工进展,2013,32(2):446-452. |
LIU L F,ZHANG Y S,HUANG X P,et al.Research progress of multipurpose utilization technologies of brine from seawater desalination plant[J].Chemical Industry and Engineering Progress,2013,32(2):446-452. | |
24 | 王秋霜,应铁进,赵超艺,等.电渗析技术在大豆低聚糖溶液脱盐上的应用[J].农业工程学报,2008,24(10):243-247. |
WANG Q S,YING T J,ZHAO C Y,et al.Application of electrodialysis technology on desalination of soybean oligosaccharides solution[J].Transactions of the CSAE,2008,24(10):243-247. | |
25 | NAGARALE R K,GOHIL G S,SHAHI V K.Recent developments on ion-exchange membranes and electro-membrane processes[J].Advances in Colloid and Interface Science,2006,119(2/3):97-130. |
26 | RAN J,WU L,HE Y,et al.Ion exchange membranes: new developments and applications[J].Journal of Membrane Science,2017,522:267-291. |
27 | ALI A,TUFA R A,MACEDONIO F,et al.Membrane technology in renewable-energy-driven desalination[J].Renewable and Sustainable Energy Reviews,2018,81:1-21. |
28 | VERMAAS D A,VEERMAN J,YIP N Y,et al.High efficiency in energy generation from salinity gradients with reverse electrodialysis[J].ACS Sustainalbe Chemistry & Engineering,2013,1(10):1295-1302. |
29 | TEDESCO M,HAMELERS H V M,BIESHEUVEL P M.Nernst-Planck transport theory for (reverse) electrodialysis:Ⅰ. Effect ofco-ion transport through the membranes[J].Journal of Membrane Science,2016,510:370-381. |
30 | TEDESCO M,HAMELERS H V M,BIESHEUVEL P M.Nernst-Planck transport theory for (reverse) electrodialysis:Ⅱ. Effect of water transport through ion-exchange membranes[J].Journal of Membrane Science,2017,531:172-182. |
31 | GHORBANI A,GHASSEMI A,ANDERSEN P K,et al.A prediction model of mass transfer through an electrodialysis cell[J].Desalination and Water Treatment,2016,57(47):22290-22303. |
32 | NIKONENKO V,ZABOLOTSKY V,LARCHET C,et al.Mathematical description of ion transport in membrane systems[J].Desalination,2002,147(1/2/3):369-374. |
33 | GNUSIN N P.Modeling of mass electrotransfer in an electrodialysis cell[J].Theoretical Foundations of Chemical Engineering,2004,38(3):296-300. |
34 | GNUSIN N P,DEMINA O A,BEREZINA N P,et al.Modeling of mass electrotransfer in terms of the transport and structural properties of ion-exchange membranes[J].Theoretical Foundations of Chemical Engineering,2004,38(4):394-398. |
35 | TANAKA Y.Concentration polarization in ion-exchange membrane electrodialysis—The events arising in a flowing solution in a desalting cell[J].Journal of Membrane Science,2003,216(1/2):149-164. |
36 | FIDALEO M,MORESI M.Application of the Nernst-Planck approach to model the electrodialytic recovery of disodium itaconate[J].Journal of Membrane Science,2010,349(1/2):393-404. |
37 | MA L,GUTIERREZ L,VANOPPEN M,et al.Transport of uncharged organics in ion-exchange membranes: experimental validation of the solution-diffusion model[J].Journal of Membrane Science,2018,564:773-781. |
38 | ROHMAN F S,AZIZ N.Mathematical model of ion transport in electrodialysis process[J].Bulletin of Chemical Reaction Engineering & Catalysis,2008,3(1/2/3):3-8. |
39 | MIER M,IBANEZ R,ORTIZ I.Influence of ion concentration on the kinetics of electrodialysis with bipolar membranes[J].Separation and Purification Technology,2008,59(2):197-205. |
40 | PISMENSKIY A,NIKONENKO V,URTENOV M,et al.Mathematical modelling of gravitational convection in electrodialysis processes[J].Desalination,2006,192(1/2/3):374-379. |
41 | TANAKA Y.Mass transport and energy consumption in ion-exchange membrane electrodialysis of seawater[J].Journal of Membrane Science,2003,215(1/2):265-279. |
42 | KRAAIJEVELD G,SUMBEROVA V,KUINDERSMA S,et al.Modelling electrodialysis using the Maxwell-Stefan description[J].The Chemical Engineering Journal,1995,57:163-176. |
43 | PINTAURO P N,BENNION D N.Mass transport of electrolytes in membranes. 2. Determination of sodium chloride equilibrium and transport parameters for Nafion[J].Industrial & Engineering Chemistry Fundamentals,1984,23:234-243. |
44 | WESSELINGH J A,VONK P,KRAAIJEVELD G.Exploring the Maxwell-Stefan description of ion exchange[J].The Chemical Engineering Journal,1995,57:75-89. |
45 | ENCISO R,DELGADILLO J A,NGUEZ O DOM,et al.Analysis and validation of the hydrodynamics of an electrodialysis cell using computational fluid dynamics[J].Desalination,2017,408:127-132. |
46 | JIANG C,WANG Q,LI Y,et al.Water electro-transport with hydrated cations in electrodialysis[J].Desalination,2015,365:204-212. |
47 | CASAS S,BONET N,ALADJEM C,et al.Modelling sodium chloride concentration from seawater reverse osmosis brine by electrodialysis: preliminary results[J].Solvent Extraction and Ion Exchange,2011,29(3):488-508. |
48 | KRISHNA R.Diffusion in multicomponent electrolyte systems[J].The Chemical Engineering Journal,1987,35:19-24. |
49 | LEE E G,S-H MOON,CHANG Y K,et al.Lactic acid recovery using two-stage electrodialysis and its modelling[J].Journal of Membrane Science,1998,145(1):53-66. |
50 | AUCLAIR B,NIKONENKO V,LARCHET C,et al.Correlation between transport parameters of ion-exchange membranes[J].Journal of Membrane Science,2002,195(1):89-102. |
51 | NIKONENKO V V,LEBEDEV K A,SULEIMANOV S S.Influence of the convective term in the Nernst-Planck equation on properties of ion transport through a layer of solution or membrane[J].Russian Journal of Electrochemistry,2009,45(2):160-169. |
52 | LARCHET C,AUCLAIR B,NIKONENKO V.Approximate evaluation of water transport number in ion-exchange membranes[J].Electrochimica Acta,2004,49(11):1711-1717. |
53 | GHASSEMI S A,DANESH S.A hybrid fuzzy multi-criteria decision making approach for desalination process selection[J].Desalination,2013,313:44-50. |
54 | KILIMANN K,HARTMANN C,DELGADO A,et al.A fuzzy logic-based model for the multistage high-pressure inactivation ofLactococcus lactis ssp. cremoris MG 1363[J].International Journal of Food Microbiology,2005,98(1):89-105. |
55 | SHAHSAVAND A,CHENAR M P.Neural networks modeling of hollow fiber membrane processes[J].Journal of Membrane Science,2007,297(1/2):59-73. |
56 | JING G L,DU W T,CHEN X,et al.Prediction model in electrodialysis process based on ANFIS[J].Advanced Materials Research,2011, 268/269/270:332-335. |
57 | JING G,DU W.Fuzzy logic-based model for prediction of separation percent of NaCl solution using electrodialysis[J].Asian Journal of Chemistry,2012,24(5):2216-2220. |
58 | SADRZADEH M,GHADIMI A,MOHAMMADI T.Coupling a mathematical and a fuzzy logic-based model for prediction of zinc ions separation from wastewater using electrodialysis[J].Chemical Engineering Journal,2009,151(1/2/3):262-274. |
59 | MJALLI F S,AL-ASHEH S,ALFADALA H E.Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance[J].J. Environ. Manage.,2007,83(3):329-338. |
60 | SHA W,EDWARDS K L.The use of artificial neural networks in materials science based research[J].Materials & Design,2007,28(6):1747-1752. |
61 | CHELLAM S.Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions[J].Journal of Membrane Science,2005,258(1/2):35-42. |
62 | CURCIO S,CALABR V,IORIO G.Reduction and control of flux decline in cross-flow membrane processes modeled by artificial neural networks[J].Journal of Membrane Science,2006,286(1/2):125-132. |
63 | AL-ZOUBI H,HILAL N,DARWISH N A,et al.Rejection and modelling of sulphate and potassium salts by nanofiltration membranes: neural network and Spiegler-Kedem model[J].Desalination,2007,206(1/2/3):42-60. |
64 | ABBAS A,AL-BASTAKI N.Modeling of an RO water desalination unit using neural networks[J].Chemical Engineering Journal,2005,114(1/2/3):139-143. |
65 | CINAR O,HASAR H,KINACI C.Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network[J].Journal of biotechnology,2006,123(2):204-209. |
66 | SADRZADEH M,MOHAMMADI T,IVAKPOUR J,et al.Neural network modeling of Pb2+ removal from wastewater using electrodialysis[J].Chemical Engineering and Processing: Process Intensification,2009,48(8):1371-1381. |
67 | CHINDAPAN N,SABLANI S S,CHIEWCHAN N,et al.Modeling and optimization of electrodialytic desalination of fish sauce using artificial neural networks and genetic algorithm[J].Food and Bioprocess Technology,2012,6(10):2695-2707. |
68 | SADRZADEH M,MOHAMMADI T,IVAKPOUR J,et al.Separation of lead ions from wastewater using electrodialysis: comparing mathematical and neural network modeling[J].Chemical Engineering Journal,2008,144(3):431-441. |
69 | TANAKA Y,REIG M,CASAS S,et al.Computer simulation of ion-exchange membrane electrodialysis for salt concentration and reduction of RO discharged brine for salt production and marine environment conservation[J].Desalination,2015,367:76-89. |
70 | CAMPIONE A,GURRERI L,CIOFALO M,et al.Electrodialysis for water desalination: a critical assessment of recent developments on process fundamentals, models and applications[J].Desalination,2018,434:121-160. |
71 | DŁUGOŁĘCKI P,ANET B,METZ S J,et al.Transport limitations in ion exchange membranes at low salt concentrations[J].Journal of Membrane Science,2010,346(1):163-171. |
72 | GLER E,ELIZEN R,SAAKES M,et al.Micro-structured membranes for electricity generation by reverse electrodialysis[J].Journal of Membrane Science,2014,458:136-148. |
73 | PAWLOWSKI S,GERALDES V,CRESPO J G,et al.Computational fluid dynamics (CFD) assisted analysis of profiled membranes performance in reverse electrodialysis[J].Journal of Membrane Science,2016,502:179-190. |
74 | WEINER A M,MCGOVERN R K,LIENHARD V J H.Increasing the power density and reducing the levelized cost of electricity of a reverse electrodialysis stack through blending[J].Desalination,2015,369:140-148. |
75 | MCGOVERN R K,ZUBAIR S M,LIENHARD V J H.The cost effectiveness of electrodialysis for diverse salinity applications[J].Desalination,2014,348:57-65. |
76 | BRAUNS E,DE WILDE W,BOSCH B VAN DEN,et al.On the experimental verification of an electrodialysis simulation model for optimal stack configuration design through solver software[J].Desalination,2009,249(3):1030-1038. |
77 | KOTER S,WARSZAWSKI A.A new model for characterization of bipolar membrane electrodialysis of brine[J].Desalination,2006,198(1/2/3):111-123. |
[1] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[2] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[3] | 徐若思, 谭蔚. C形管池沸腾两相流流场模拟与流固耦合分析[J]. 化工进展, 2023, 42(S1): 47-55. |
[4] | 张凤岐, 崔成东, 鲍学伟, 朱炜玄, 董宏光. 胺液吸收-分步解吸脱硫工艺的设计与评价[J]. 化工进展, 2023, 42(S1): 518-528. |
[5] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[6] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[7] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[8] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[9] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[10] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[11] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[12] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[13] | 孙继鹏, 韩靖, 唐杨超, 闫汉博, 张杰瑶, 肖苹, 吴峰. 硫黄湿法成型过程数值模拟与操作参数优化[J]. 化工进展, 2023, 42(S1): 189-196. |
[14] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[15] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |