化工进展 ›› 2019, Vol. 38 ›› Issue (08): 3658-3669.DOI: 10.16085/j.issn.1000-6613.2018-1987
收稿日期:
2018-10-08
出版日期:
2019-08-05
发布日期:
2019-08-05
通讯作者:
李志勤
作者简介:
邱泽刚(1981—),男,博士,副教授,研究方向为能源化工。E-mail:基金资助:
Zegang QIU(),Chanjuan YIN,Zhiqin LI(),Yuekuo FENG
Received:
2018-10-08
Online:
2019-08-05
Published:
2019-08-05
Contact:
Zhiqin LI
摘要:
酚类加氢脱氧(HDO)是石油、煤基液体燃料和生物质油转化利用中的重要过程,催化剂在其中起关键作用。酚类加氢脱氧催化剂包括过渡金属硫化物、还原态金属催化剂、磷化物、碳化物和氮化物等。本文从活性、选择性、稳定性和催化机理等方面介绍了各类催化剂的研究进展。过渡金属硫化物重点介绍了负载的CoMoS催化剂和非负载的MoS2,其中晶态MoS2具有优异的活性和选择性。还原态金属介绍了负载的非贵金属(Ni、Mo和Co)、贵金属(Rh、Ru、Pd和Pt)和双金属(NiRu、Ni-Fe、Mo-Pt和Pd-X)等催化剂,并对不同的金属催化剂进行了比较。磷化物重点介绍了SiO2负载的Ni2P、MoP和CoP,Ni2P/SiO2具有很高的催化活性和选择性。碳化物主要是Mo2C催化剂,其具有较高的芳环类产物选择性。氮化物主要是Mo2N催化剂,其加氢脱氧活性仍有待提高。各类催化剂大多存在稳定性欠缺的问题,过渡金属硫化物主要是提高催化剂对水的稳定性,还原态金属必须重视杂质尤其是硫引起的中毒问题,可考虑与脱硫催化剂组合使用,磷化物应关注积炭和颗粒团聚。
中图分类号:
邱泽刚,尹婵娟,李志勤,冯跃阔. 酚类加氢脱氧催化剂研究进展[J]. 化工进展, 2019, 38(08): 3658-3669.
Zegang QIU,Chanjuan YIN,Zhiqin LI,Yuekuo FENG. Recent advances in hydrodeoxygenation catalysts for phenols[J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3658-3669.
催化剂类别 | 催化剂组成 | 反应物 | 溶剂 | 反应条件 | 转化率/% | 主要产物及选择性/% | 参考文献 | ||
---|---|---|---|---|---|---|---|---|---|
温度/℃ | 压力/MPa | 时间/h | |||||||
过渡金属硫化物催化剂 | CoMoS/γ-Al2O3 | 苯酚 | 正十二烷 | 300 | 5 | 4 | 27 | 苯37 | [ |
4-甲基酚 | 22 | 甲苯60 | |||||||
MoS2 | 苯酚 | 正十四烷 | 300 | 4 | 6 | 约100 | 环己烷99.63 | [ | |
Co-MoS2 | 4-甲基酚 | 十氢萘 | 180 | 3 | 8 | 97.6 | 甲苯98.4 | [ | |
无定形MoS2 | 4-甲基酚 | 正十二烷 | 300 | 4 | 6 | 84 | 甲苯85.7 | [ | |
Ni掺杂的无定形MoS2 | 苯酚 | 正十二烷 | 300 | 3 | 2 | 70 | 环己烷约90 | [ | |
还原态金属催化剂 | Ni/SiO2 | 2-甲氧基苯酚 | 十氢萘 | 120 | 2 | 2 | 100 | 环己醇99.9 | [ |
Co/Al2O3 | 苯酚 | 正十二烷 | 300 | 3 | 4 | 100 | 环己烷、苯、环己烯 | [ | |
Mo/纳米γ-Al2O3 | 苯甲醚 | 无 | 450 | — | 6.0h-1③ | 70 | 苯酚75、苯25 | [ | |
Pd/SA Pd,Pt/C | 苯酚 | 正十六烷 | 300 — | 3 3 | 1 1 | 99 99 | 环己烷99 环己醇99 | [ | |
Pd/t-ZrO2 | 苯酚 | 无 | 300 | 常压 | — | 90 | 苯80 | [ | |
Pd/Nb2O5 | 苯酚 | 无 | 400 | 0.1 | — | 10 | 苯99.6 | [ | |
Ni5-Fe1/CNT | 2-甲氧基苯酚 | 无 | 300 | 3 | 6.0h-1③ | 96.8 | 环己烷83.4 | [ | |
Ni1-Fe5/CNT | 47.2 | 苯酚83.3 | |||||||
Mo-Pt/TiO2 | 2-甲氧基苯酚 | 正十二烷 | 285 | 4 | — | 94 | 环己烷57.7 | [ | |
磷化物、碳化物和氮化物 | Ni2P /SiO2 | 苯甲醚 | 无 | 300 | — | 1.8h-1③ | 97 | 环己烷92.6 | [ |
400 | — | 100 | 苯96.4 | ||||||
Ni2P/SiO2 | 2-甲氧基苯酚 | 无 | 350 | 常压 | 2.0h-1③ | 8 | 苯95、苯酚3 | [ | |
CoP/SiO2 | 苯酚 | 辛烷 | 300 | 3 | 0.42h-1③ | 99 | 环己烷90 | [ | |
MoC x /C | 2-甲氧基苯酚 | — | 300 | 0.5 | 2 | 99 | 苯酚76、邻甲基苯酚8、苯3 | [ | |
Mo2N/活性炭 | 2-甲氧基苯酚 | 正癸烷 | 300 | 5 | <4.5 | <12 | 邻苯二酚、苯酚 | [ |
表1 酚类HDO研究中的各类催化剂及其性能
催化剂类别 | 催化剂组成 | 反应物 | 溶剂 | 反应条件 | 转化率/% | 主要产物及选择性/% | 参考文献 | ||
---|---|---|---|---|---|---|---|---|---|
温度/℃ | 压力/MPa | 时间/h | |||||||
过渡金属硫化物催化剂 | CoMoS/γ-Al2O3 | 苯酚 | 正十二烷 | 300 | 5 | 4 | 27 | 苯37 | [ |
4-甲基酚 | 22 | 甲苯60 | |||||||
MoS2 | 苯酚 | 正十四烷 | 300 | 4 | 6 | 约100 | 环己烷99.63 | [ | |
Co-MoS2 | 4-甲基酚 | 十氢萘 | 180 | 3 | 8 | 97.6 | 甲苯98.4 | [ | |
无定形MoS2 | 4-甲基酚 | 正十二烷 | 300 | 4 | 6 | 84 | 甲苯85.7 | [ | |
Ni掺杂的无定形MoS2 | 苯酚 | 正十二烷 | 300 | 3 | 2 | 70 | 环己烷约90 | [ | |
还原态金属催化剂 | Ni/SiO2 | 2-甲氧基苯酚 | 十氢萘 | 120 | 2 | 2 | 100 | 环己醇99.9 | [ |
Co/Al2O3 | 苯酚 | 正十二烷 | 300 | 3 | 4 | 100 | 环己烷、苯、环己烯 | [ | |
Mo/纳米γ-Al2O3 | 苯甲醚 | 无 | 450 | — | 6.0h-1③ | 70 | 苯酚75、苯25 | [ | |
Pd/SA Pd,Pt/C | 苯酚 | 正十六烷 | 300 — | 3 3 | 1 1 | 99 99 | 环己烷99 环己醇99 | [ | |
Pd/t-ZrO2 | 苯酚 | 无 | 300 | 常压 | — | 90 | 苯80 | [ | |
Pd/Nb2O5 | 苯酚 | 无 | 400 | 0.1 | — | 10 | 苯99.6 | [ | |
Ni5-Fe1/CNT | 2-甲氧基苯酚 | 无 | 300 | 3 | 6.0h-1③ | 96.8 | 环己烷83.4 | [ | |
Ni1-Fe5/CNT | 47.2 | 苯酚83.3 | |||||||
Mo-Pt/TiO2 | 2-甲氧基苯酚 | 正十二烷 | 285 | 4 | — | 94 | 环己烷57.7 | [ | |
磷化物、碳化物和氮化物 | Ni2P /SiO2 | 苯甲醚 | 无 | 300 | — | 1.8h-1③ | 97 | 环己烷92.6 | [ |
400 | — | 100 | 苯96.4 | ||||||
Ni2P/SiO2 | 2-甲氧基苯酚 | 无 | 350 | 常压 | 2.0h-1③ | 8 | 苯95、苯酚3 | [ | |
CoP/SiO2 | 苯酚 | 辛烷 | 300 | 3 | 0.42h-1③ | 99 | 环己烷90 | [ | |
MoC x /C | 2-甲氧基苯酚 | — | 300 | 0.5 | 2 | 99 | 苯酚76、邻甲基苯酚8、苯3 | [ | |
Mo2N/活性炭 | 2-甲氧基苯酚 | 正癸烷 | 300 | 5 | <4.5 | <12 | 邻苯二酚、苯酚 | [ |
1 | 高晋生 . 煤的热解、炼焦和煤焦油加工[M]. 北京: 化学工业出版社, 2010. |
GAO J S . Pyrolysis, coking and coal tar processing of coal[M]. Beijing: Chemical Industry Press, 2010. | |
2 | 水恒福, 张德祥, 张超群 . 煤焦油分离与精制[M]. 北京: 化学工业出版社, 2007. |
SHUI H F , ZHANG D X , ZHANG C Q . Separation and refining of coal tar[M]. Beijing: Chemical Industry Press, 2007. | |
3 | 韩崇仁 . 加氢裂化工艺与工程[M]. 北京: 中国石化出版社, 2001. |
HAN C R . Hydrocracking process and engineering[M]. Beijing:China Petrochemical Press, 2001. | |
4 | 张俊丽, 王芳, 陈瑛, 等 . 中国煤焦油环境管理现状及建议[J]. 洁净煤技术, 2015, 21(1): 103-106. |
ZHANG J L , WANG F , CHEN Y , et al . Status and suggestions of coal tar environmental management in China[J]. Clean Coal Technology, 2015, 21(1): 103-106. | |
5 | 王汝成, 孙鸣, 刘巧霞, 等 . 陕北中低温煤焦油中酚类化合物的提取与GC/MS分析[J]. 煤炭学报, 2011, 36(4): 664-669. |
WANG R C , SUN M , LIU Q X , et al . Extraction and GC/MS analysis of phenolic compounds in coal tar in northern shaanxi[J]. Journal of Coal, 2011, 36(4): 664-669. | |
6 | WANG P F , JIN L J , LIU J H , et al . Analysis of coal tar derived from pyrolysis at different atmospheres[J]. Fuel, 2013, 104(2): 14-21. |
7 | 张生娟, 高亚男, 陈刚, 等 . 煤焦油中酚类化合物的分离及其组成结构鉴定研究进展[J]. 化工进展, 2018, 37(7): 2588-2596. |
ZHANG S J , GAO Y N , CHEN G , et al . Advances in separation and identification of phenolic compounds in coal tar[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2588-2596. | |
8 | 李青松 . 褐煤化工技术[M]. 北京: 化学工业出版社, 2014: 177. |
LI Q S . Lignite chemical technology[M]. Beijing: Chemical Industry Press, 2014: 177. | |
9 | 曲思建, 关北锋, 王燕芳, 等 . 我国煤温和气化(热解)焦油性质及其加工利用现状与进展[J]. 煤炭转化, 1998, 21(1): 15-20. |
QU S J , GUAN B F , WANG Y F , et al . The properties of mild coal gasification (pyrolysis) tar and its status and development in China[J]. Coal Conversion, 1998, 21(1): 15-20. | |
10 | 毛学锋, 李文博, 高振楠, 等 . 工艺条件对煤液化油中酚类化合物的影响研究[J]. 煤炭转化, 2010, 33(1): 26-30. |
MAO X F , LI W B , GAO Z N , et al . Study on the effects of process conditions on phenolic compounds in direct coal liquffactionoils[J]. Coal Conversion, 2010, 33(1): 26-30. | |
11 | 李培霖, 赵鹏, 赵渊, 等 . 煤基油中酚类化合物分布特征的研究[J]. 煤炭转化, 2013, 36(3): 65-67. |
LI P L , ZHAO P , ZHAO Y , et al . Study on distribution and characterization of phenolics in coal-derived oil[J]. Coal Conversion, 2013, 36(3): 65-67. | |
12 | 孔劼琛, 骆治成, 李愽龙, 等 . 木质素解聚和加氢脱氧的进展[J]. 中国科学: 化学, 2015, 45(5): 510-525. |
KONG J C , LUO Z C , LI B L , et al . Progress in lignin depolymerization and hydrodeoxygenation[J]. Scientia Sinica Chimica, 2015, 45(5): 510-525. | |
13 | SAIDI M , SAMIMI F , KARIMIPOURFARD D , et al . Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation[J]. Energy & Environmental Science, 2013, 7(1): 103-129. |
14 | 桑小义, 李会峰, 李明丰, 等 . 含氧化合物加氢脱氧的研究进展[J]. 石油化工, 2014, 43(4): 466-473. |
SANG X Y , LI H F , LI M F , et al . Progresses in researches on hydrodeoxygenation of oxygenic compounds[J]. Petrochemical Technology, 2014, 43(4): 466-473. | |
15 | ZHANG X , ZHANG Q , LONG J , et al . Phenolics production through catalytic depolymerization of alkali lignin with metal chlorides[J]. Bioresources, 2014, 9(2): 3347-3360. |
16 | XU H , YU B , ZHANG H , et al . Reductive cleavage of inert aryl C—O bonds to produce arenes[J]. Chemical Communications, 2016, 46(48): 12212-12215. |
17 | ELLIOTT D C . Historical developments in hydroprocessing bio-oils[J]. Energy & Fuels, 2007, 21(3): 1792-1815. |
18 | ZAKZESKI J , BRUIJNINCX P C , JONGERIUS A L , et al . The catalytic valorization of lignin for the production of renewable chemicals[J]. Chemical Reviews, 2013, 110(6): 3552-3599. |
19 | HICKS J C . Advances in C—O bond transformations in lignin-derived compounds for biofuels production[J]. Journal of Physical Chemistry Letters, 2011, 2(18): 2280-2287. |
20 | GALLEZOT P . ChemInform abstract: conversion of biomass to selected chemical products[J]. Chemical Society Reviews, 2012, 41(4): 1538-1558. |
21 | HE Z , WANG X . Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading[J]. Catalysis for Sustainable Energy, 2012, 1: 28-52. |
22 | WANG H , MALE J , WANG Y . Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. ACS Catalysis, 2013, 3(5): 1047-1070. |
23 | 王威燕, 杨运泉, 童刚生, 等 . 生物油加氢脱氧研究进展[J]. 工业催化, 2009, 17(5): 7-14. |
WANG W Y , YANG Y Q , TONG G S , et al . Researches on hydrodeoxygenation of bio-oils[J]. Industrial Catalysis, 2009, 17(5): 7-14. | |
24 | 张琦, 马隆龙, 张兴华 . 生物质转化为高品位烃类燃料研究进展[J]. 农业机械学报, 2015, 46(1): 170-179. |
ZHANG Q , MA L L, ZHANG X H . Progress in production of high-quality hydrocarbon fuels from biomass[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1): 170-179. | |
25 | SERGEEV A G , HARTWIG J F . Selective, nickel-catalyzed hydrogenolysis of aryl ethers[J]. Cheminform, 2011, 42(33): 439-443. |
26 | SERGEEV A G , WEBB J D , HARTWIG J F . A heterogeneous nickel catalyst for the hydrogenolysis of aryl ethers without arene hydrogenation[J]. Journal of the American Chemical Society, 2012, 134(50): 20226-20229. |
27 | FURIMSKY E . Catalytic hydrodeoxygenation[J]. Applied Catalysis A: General, 2000, 199(2): 147-190. |
28 | SUN M , ADJAYE J , NELSON A E . Theoretical investigations of the structures and properties of molybdenum-based sulfide catalysts[J]. Applied Catalysis A: General, 2004, 263(2): 131-143. |
29 | ROMERO Y , RICHARD F , BRUNET S . Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: promoting effect and reaction mechanism[J]. Applied Catalysis B: Environmental, 2010, 98(3): 213-223. |
30 | JONGERIUS A L , JASTRZEBSKI R , BRUIJNINCX P C A , et al . CoMo sulfide-catalyzed hydrodeoxygenation of lignin model compounds: an extended reaction network for the conversion of monomeric and dimeric substrates[J]. Journal of Catalysis, 2012, 285(1): 315-323. |
31 | RAHIMPOUR H R , SAIDI M , ROSTAMI P , et al . Experimental investigation on upgrading of lignin-derived bio-oils: kinetic analysis of anisole conversion on sulfided CoMo/Al2O3 catalyst[J]. International Journal of Chemical Kinetics, 2016, 48(11): 702-713. |
32 | BUI V N, LAURENTI D , DELICHÈRE P , et al . Hydrodeoxygenation of guaiacol Part Ⅱ: Support effect for CoMoS catalysts on HDO activity and selectivity[J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 246-255. |
33 | ZHANG Z , YUE C , HU J . Fabrication of porous MoS2 with controllable morphology and specific surface area for hydrodeoxygenation[J]. Nano Brief Reports & Reviews, 2017, 12(9): 1750116. |
34 | LIU G , ROBERTSON A W , LI M M , et al . MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction[J]. Nature Chemistry, 2017, 9(8): 810-816. |
35 | YOOSUK B , TUMNANTONG D , PRASASSARAKICH P . Amorphous unsupported Ni-Mo sulfide prepared by one step hydrothermal method for phenol hydrodeoxygenation[J]. Fuel, 2012, 91(1): 246-252. |
36 | WU K , WANG W , TAN S , et al . Microwave-assisted hydrothermal synthesis of amorphous MoS2 catalysts and their activities in the hydrodeoxygenation of p-cresol[J]. RSC Advances, 2016, 6(84): 80641-80648. |
37 | ITTHIBENCHAPONG V , RATANATAWANATE C , OURA M , et al . A facile and low-cost synthesis of MoS2 for hydrodeoxygenation of phenol[J]. Catalysis Communications, 2015, 68(3): 31-35. |
38 | BADAWI M , PAUL J F , CRISTOL S , et al . Effect of water on the stability of Mo and CoMo hydrodeoxygenation catalysts: a combined experimental and DFT study[J]. Journal of Catalysis, 2011, 282(1): 155-164. |
39 | MORTENSEN P M , GARDINI D , DAMSGAARD C D , et al . Deactivation of Ni-MoS2 by bio-oil impurities during hydrodeoxygenation of phenol and octanol[J]. Applied Catalysis A: General, 2016, 523: 159-170. |
40 | PRASOMSRI T , SHETTY M , MURUGAPPAN K , et al . Insights into the catalytic activity and surface modification of MoO3 during the hydrodeoxygenation of lignin-derived model compounds into aromatic hydrocarbons under low hydrogen pressures[J]. Energy & Environmental Science, 2014, 7(8): 2660-2669. |
41 |
ZHANG X H , TANG J J , ZHANG Q , et al . Hydrodeoxygenation of lignin-derived phenolic compounds into aromatic hydrocarbons under low hydrogen pressure using molybdenum oxide as catalyst[J]. Catalysis Today, 2018. doi: 10.1016/j.cattod.2018.03.068 .
DOI URL |
42 | AQSHA A , KATTA L , MAHINPEY N . Catalytic hydrodeoxygenation of guaiacol as lignin model component using Ni-Mo/TiO2 and Ni-V/TiO2 catalysts[J]. Catalysis Letters, 2015, 145(6): 1351-1363. |
43 | OTYUSKAYA D , THYBAUT J W , LØDENG R , et al . Anisole hydrotreatment kinetics on CoMo catalyst in the absence of sulfur: experimental investigation and model construction[J]. Energy & Fuels, 2017, 31(7): 7082-7092. |
44 | MORTENSEN P M , GRUNWALDT J D , JENSEN P A , et al . Screening of catalysts for hydrodeoxygenation of phenol as a model compound for bio-oil[J]. ACS Catalysis, 2013, 3(8): 1774-1785. |
45 | SHU R , ZHANG Q , XU Y , et al . Hydrogenation of lignin-derived phenolic compounds over step by step precipitated Ni/SiO2 [J]. RSC Advances, 2016, 6(7): 5214-5222. |
46 | TAGHVAEI H , RAHIMPOUR M R , BRUGGEMAN P . Catalytic hydrodeoxygenation of anisole over nickel supported on plasma treated alumina-silica mixed oxides[J]. RSC Advances, 2017, 7(49): 30990-30998. |
47 | MORTENSEN P M , GRUNWALDT J D , JENSEN P A , et al . Influence on nickel particle size on the hydrodeoxygenation of phenol over Ni/SiO2 [J]. Catalysis Today, 2016, 259: 277-284. |
48 | YANG F , LIU D , ZHAO Y , et al . Size dependence of vapor phase hydrodeoxygenation of m-cresol on Ni/SiO2 catalysts[J]. ACS Catalysis, 2018, 8(3): 1672-1682. |
49 | GHAMPSON I T , SEPULVEDA C , DONGIL A B , et al . Phenol hydrodeoxygenation: effect of support and Re promoter on the reactivity of Co catalysts[J]. Catalysis Science & Technology, 2016, 6(19): 7289-7306. |
50 | TRAN N T T , UEMURA Y , CHOWDHURY S , et al . Vapor-phase hydrodeoxygenation of guaiacol on Al-MCM-41 supported Ni and Co catalysts[J]. Applied Catalysis A: General, 2016, 512(2): 93-100. |
51 | SAIDI M , RAHZANI B , RAHIMPOUR M R . Characterization and catalytic properties of molybdenum supported on nano gamma Al2O3 for upgrading of anisole model compound[J]. Chemical Engineering Journal, 2017, 319: 143-154. |
52 | RAHZANI B , SAIDI M , RAHIMPOUR H R , et al . Experimental investigation of upgrading of lignin-derived bio-oil component anisole catalyzed by carbon nanotube-supported molybdenum[J]. RSC Advances, 2017, 7(17): 10545-10556. |
53 | NIMMANWUDIPONG T , RUNNEBAUM R C , BLOCK D E , et al . Catalytic conversion of guaiacol catalyzed by platinum supported on alumina: reaction network including hydrodeoxygenation reactions[J]. Energy & Fuels, 2011, 25(8): 3417-3427. |
54 | DEEPA A K , DHEPE P L . Function of metals and supports on the hydrodeoxygenation of phenolic compounds[J]. ChemPlusChem, 2015, 79(11): 1573-1583. |
55 | ZHU X , NIE L , LOBBAN L L , et al . Efficient conversion of m-cresol to aromatics on a bifunctional Pt/HBeta catalyst[J]. Energy & Fuels, 2014, 28(6): 4104-4111. |
56 | NIE L , PENG B , ZHU X . Vapor-phase hydrodeoxygenation of guaiacol to aromatics over pt/Hbeta: identification of the role of acid sites and metal sites on the reaction pathway[J]. ChemCatChem, 2018, 10(5): 1064-1074. |
57 | SOUZA P M D , NETO R C R , BORGES L E P , et al . Effect of zirconia morphology on hydrodeoxygenation of phenol over Pd/ZrO2 [J]. Catalysis, 2015, 5: 7385-7398. |
58 | BARRIOS A M , TELES C A , SOUZA P M D , et al . Hydrodeoxygenation of phenol over niobia supported Pd catalyst[J]. Catalysis Today, 2018, 302: 115-124. |
59 | GHAMPSON I T , SEPÚLVEDA C , GARCÍA R , et al . Carbon nanofiber-supported ReO x catalysts for the hydrodeoxygenation of lignin-derived compounds[J]. Catalysis Science & Technology, 2016, 6(10): 2964-2972. |
60 | NGUYEN T S , LAURENTI D , AFANASIEV P , et al . Titania-supported gold-based nanoparticles efficiently catalyze the hydrodeoxygenation of guaiacol[J]. Journal of Catalysis, 2016, 344: 136-140. |
61 | MAO J , ZHOU J , XIA Z , et al . Anatase TiO2 activated by gold nanoparticles for selective hydrodeoxygenation of guaiacol to phenolics[J]. ACS Catalysis, 2017, 7(1): 695-705. |
62 | VALDÉS-MARTÍNEZ O U , SUÁREZ-TORIELLO V A , REYES J A D L , et al . Support effect and metals interactions for NiRu/Al2O3, TiO2, and ZrO2, catalysts in the hydrodeoxygenation of phenol[J]. Catalysis Today, 2017, 296: 219-227. |
63 | FANG H , ZHENG J , LUO X , et al . Product tunable behavior of carbon nanotubes-supported Ni-Fe catalysts for guaiacol hydrodeoxygenation[J]. Applied Catalysis A: General, 2017, 529: 20-31. |
64 | LIU X , AN W , TURNER C H , et al . Hydrodeoxygenation of m-cresol over bimetallic NiFe alloys: kinetics and thermodynamics insight into reaction mechanism[J]. Journal of Catalysis, 2018, 359: 272-286. |
65 | HE Z , HU M , WANG X . Highly effective hydrodeoxygenation of guaiacol on Pt/TiO2: promoter effects[J]. Catalysis Today, 2017, 302: 136-145. |
66 | RESENDE K A , TELES C A , JACOBS G , et al . Hydrodeoxygenation of phenol over zirconia supported Pd bimetallic catalysts. The effect of second metal on catalyst performance[J]. Applied Catalysis B: Environmental, 2018, 232: 213-231. |
67 | KORDOULI E , KORDULIS C , LYCOURGHIOTIS A , et al . HDO activity of carbon-supported Rh, Ni and Mo-Ni catalysts[J]. Molecular Catalysis, 2017, 441: 209-220. |
68 | TELES C A , RABELO-NETO R C , LIMA J R D , et al . The effect of metal type on hydrodeoxygenation of phenol over silica supported catalysts[J]. Catalysis Letters, 2016, 146(10): 1-10. |
69 | TELES C A , RABELO-NETO R C , JACOBS G , et al . Hydrodeoxygenation of phenol over zirconia-supported catalysts: the effect of metal type on reaction mechanism and catalyst deactivation[J]. ChemCatChem, 2017, 9(14): 2850-2863. |
70 | GAMLIEL D P , KARAKALOS S , VALLA J A . Liquid phase hydrodeoxygenation of anisole, 4-ethylphenol and benzofuran using Ni, Ru and Pd supported on USY zeolite[J]. Applied Catalysis A: General, 2018, 559: 20-29. |
71 | BOSCAGLI C , YANG C , WELLE A , et al . Effect of pyrolysis oil components on the activity and selectivity of nickel-based catalysts during hydrotreatment[J]. Applied Catalysis A: General, 2017, 544: 161-172. |
72 |
YANG F F , WANG H , HAN J Y , et al . Influence of Re addition to Ni/SiO2 catalyst on the reaction network and deactivation during hydrodeoxygenation of m-cresol [J]. Catalysis Today, 2018. doi: 10.1016/j.cattod.2018.04.073 .
DOI URL |
73 | LI K , WANG R , CHEN J . Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts[J]. Energy & Fuels, 2011, 25(3): 854-863. |
74 | LI Y , FU J , CHEN B . Highly selective hydrodeoxygenation of anisole, phenol and guaiacol to benzene over nickel phosphide[J]. RSC Advances, 2017, 7(25): 15272-15277. |
75 | LAN X , HENSEN E J M , WEBER T . Hydrodeoxygenation of guaiacol over Ni2P/SiO2 reaction mechanism and catalyst deactivation[J]. Applied Catalysis A: General, 2018, 550: 57-66. |
76 | RODRÍGUEZ-AGUADO E , INFANTES-MOLINA A , CECILIA J A , et al . Co x P y catalysts in HDO of phenol and dibenzofuran: effect of pcontent[J]. Topics in Catalysis, 2017, 60(15/16): 1-14. |
77 | RENSEL D J , KIM J , JAIN V , et al . Composition-directed Fe x Mo2-xP bimetallic catalysts for hydrodeoxygenation reactions[J]. Catalysis Science & Technology, 2017, 7(9): 1857-1867. |
78 | CHEN C J , LEE W S, BHAN A . Mo2C catalyzed vapor phase hydrodeoxygenation of lignin-derived phenolic compound mixtures to aromatics under ambient pressure[J]. Applied Catalysis A: General, 2016, 510: 42-48. |
79 | CAO Z W , ENGELHARDT J , DIERKS M , et al . Catalysis meets nonthermal separation for the production of (alkyl)phenols and hydrocarbons from pyrolysis oil[J]. Angewandte Chemie International Edition, 2017, 56(9): 2334-2339. |
80 | SEPÚLVEDA C , LEIVA K , GARCÍA R , et al . Hydrodeoxygenation of 2-methoxyphenol over Mo2N catalysts supported on activated carbons[J]. Catalysis Today, 2011, 172(1): 232-239. |
81 | BOULLOSA-EIRAS S , LØDENG R , BERGEM H , et al . Catalytic hydrodeoxygenation (HDO) of phenol over supported molybdenum carbide, nitride, phosphide and oxide catalysts[J]. Catalysis Today, 2014, 223(5): 44-53. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[14] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[15] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |