化工进展 ›› 2019, Vol. 38 ›› Issue (07): 3355-3364.DOI: 10.16085/j.issn.1000-6613.2018-2292
收稿日期:
2018-11-26
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
曹辉
作者简介:
赵俭波(1982—),男,博士研究生,副教授,研究方向为生物质材料的制备及高值化利用。E-mail:<email>lain_1982@163.com</email>。
基金资助:
Jianbo ZHAO1,2(),Jun WEI1,Hui CAO1(),Tianwei TAN1
Received:
2018-11-26
Online:
2019-07-05
Published:
2019-07-05
Contact:
Hui CAO
摘要:
聚天冬氨酸(PASP)水凝胶由于其良好的生物相容性、生物降解性及吸水、保水性引起了众多科研工作者的关注。本文首先综述了PASP水凝胶的合成方法,并对比了各自的优势和不足。在此基础上,介绍了本文作者课题组开发的水相均相交联工艺,此工艺具有污染小、成本低的优势,并初步实现了工业化生产,产品的吸水倍率可达300~1000g/g。此外,本文还综述了PASP水凝胶的共混/共聚改性及其在农业及生态修复、环境保护的应用,并着重介绍了PASP的结构可设计性及其在生物医学领域的相关应用研究。其中,本文作者课题组针对PASP水凝胶的吸水保水特性,持续开展了其作为农林保水剂的研究,并得到了良好的试验结果,为大规模应用提供了有益的参考。最后针对PASP性能、合成工艺和应用领域的关联性,归纳了PASP水凝胶亟待解决的问题。本文的阐述将为PASP水凝胶的合成、应用和推广等研究工作提供指导和参考。
中图分类号:
赵俭波, 魏军, 曹辉, 谭天伟. 聚天冬氨酸水凝胶的研究与应用进展[J]. 化工进展, 2019, 38(07): 3355-3364.
Jianbo ZHAO, Jun WEI, Hui CAO, Tianwei TAN. The research and application progress of PASP hydrogel[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3355-3364.
合成方法 | 合成过程 | 优势 | 不足之处 |
---|---|---|---|
高能辐射交联 | |||
γ射线辐射交联 | 先由 PSI 水解得到线状 PSAP;再将线状 PSAP 溶解到水中,用γ射线辐射交联而最终得到交联 PSAP | 纯度高,吸水倍率高 | 不易大规模生产,且成本高、易产生放射性污染 |
紫外光辐射交联 | 以GMA、AMA或丙烯酰氯对PHEA或PSI接枝制备带双键衍生物,并暴露于紫外线光源处制得水凝胶 | 无需加热,反应速度快 | 需引入光敏基团,工艺复杂,且聚合过程中δ键易断裂 |
互补基团化学交联 | |||
PSI出发 | |||
先交联再水解 | 先在有机相中以二氨化合物为交联剂使 PSI 交联;再使交联 PSI 在碱性水溶液中水解得到交联 PSAP | 均相反应,交联度高 | 交联过程中使用了有机溶剂如 DMF、DMSO 等,容易产生环境问题 |
交联水解同时进行 | 在碱性水溶液中,并有交联剂存在下,将 PSI 一步交联、水解,得到水凝胶 | 工艺过程步骤少,不使用有机溶剂,环境污染小,成本较低 | 反应均一性较差,交联程度较低 |
先水解再交联 | 先在碱性条件下将PSI水解得线状PASP;再用环氧类交联剂交联得PASP水凝胶 | 均一性好,产物交联度高,不使用有机溶剂,工艺简单, 成本较低 | 主链上酰胺键易断裂,脆性较大 |
PASP衍生物出发 | 先采用羟基、氨基、巯基、烷氧基等活性基团对PSI改性开环制备PASP衍生物,再利用各种交联剂与PASP衍生物活性官能团反应制备水凝胶 | 可制备具有特殊结构或用途的凝胶 | 工艺复杂,不易大规模生产,成本高 |
表1 PASP水凝胶的合成方法
合成方法 | 合成过程 | 优势 | 不足之处 |
---|---|---|---|
高能辐射交联 | |||
γ射线辐射交联 | 先由 PSI 水解得到线状 PSAP;再将线状 PSAP 溶解到水中,用γ射线辐射交联而最终得到交联 PSAP | 纯度高,吸水倍率高 | 不易大规模生产,且成本高、易产生放射性污染 |
紫外光辐射交联 | 以GMA、AMA或丙烯酰氯对PHEA或PSI接枝制备带双键衍生物,并暴露于紫外线光源处制得水凝胶 | 无需加热,反应速度快 | 需引入光敏基团,工艺复杂,且聚合过程中δ键易断裂 |
互补基团化学交联 | |||
PSI出发 | |||
先交联再水解 | 先在有机相中以二氨化合物为交联剂使 PSI 交联;再使交联 PSI 在碱性水溶液中水解得到交联 PSAP | 均相反应,交联度高 | 交联过程中使用了有机溶剂如 DMF、DMSO 等,容易产生环境问题 |
交联水解同时进行 | 在碱性水溶液中,并有交联剂存在下,将 PSI 一步交联、水解,得到水凝胶 | 工艺过程步骤少,不使用有机溶剂,环境污染小,成本较低 | 反应均一性较差,交联程度较低 |
先水解再交联 | 先在碱性条件下将PSI水解得线状PASP;再用环氧类交联剂交联得PASP水凝胶 | 均一性好,产物交联度高,不使用有机溶剂,工艺简单, 成本较低 | 主链上酰胺键易断裂,脆性较大 |
PASP衍生物出发 | 先采用羟基、氨基、巯基、烷氧基等活性基团对PSI改性开环制备PASP衍生物,再利用各种交联剂与PASP衍生物活性官能团反应制备水凝胶 | 可制备具有特殊结构或用途的凝胶 | 工艺复杂,不易大规模生产,成本高 |
1 | 谭天伟, 俞建良, 张栩. 生物炼制技术研究新进展[J]. 化工进展, 2011, 30(1): 117-125. |
TANTianwei, YUJianliang, ZHANGXu. Advance in biorefinery technology[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 117-125. | |
2 | 谭天伟, 苏海佳, 杨晶. 生物基材料产业化进展[J]. 中国材料进展, 2012, 31(2):1-6. |
TANTianwei, SUHaijia, YANGJing. Progress in industrialization of biobased materials[J]. Materials China, 2012, 31(2):1-6. | |
3 | TOMIDAM, YABEM, ARAKAWAY. Preparation conditions and properties of biodegradable hydrogels prepared by γ-irradiation of poly (aspartic acid)s synthesized by thermal polycondensation[J]. Polymer, 1997, 38(11):2791-2795. |
4 | SPADAROG, DISPENZAC, GIAMMONAG, et al. Cytarabine release from α,β-poly (N-hydroxyethyl)-DL-aspartamide matrices cross-linked through γ-radiation[J]. Biomoterials, 1996, 17(10): 953–958. |
5 | GIAMMONAG, PITARRESIG, CAVALLAROG, et al. pH-sensitive hydrogel based on a polyaspartamide derivative [J]. Journal of Drug Delivery Science and Technology, 2006, 16(1): 77-84. |
6 | GIAMMONAG, PITARRESIG. New biodegradable hydrogels based on an acryloylated polyaspartamide cross-linked by gamma irradiation[J]. Journal of Biomaterials Science, 2014, 10(9): 37-41. |
7 | LOPRESTIC, VETRIV, RICCAM, et al. Pulsatile protein release and protection using radiation-crosslinked polypeptide hydrogel delivery devices[J]. Reactive and Functional Polymers, 2011, 71(2):155-167. |
8 | PITARRESIG, PALUMBOF, GIAMMONAG, et al. Biodegradable hydrogels obtained by photocrosslinking of dextran and polyaspartamide derivatives[J]. Biomaterials, 2003, 24(23): 4301-4313. |
9 | PITARRESIG, PIERROP, TRIPODOG, et al. Drug delivery from mucoadhesive disks based on a photo-cross-linkable polyaspartamide derivative[J]. Journal of Durg Delivery Science and Technology, 2005,15(5): 377-382. |
10 | PARKJ, MOONJ. Photo-crosslinked polyaspartamide hybrid gel containing thermo-responsive Pluronic triblock copolymer[J]. Journal of Polymer Research, 2011, 18(2):273-278. |
11 | CAOH, MA X, SUNS, et al. A new photocrosslinkable hydrogel based on a derivative of polyaspartic acid for the controlled release of ketoprofen[J]. Polymer Bulletin, 2010, 64(6):623-632. |
12 | NAGATOMOA, TAMATANIH, AJIOKAM, et al. Superabsorbent polymer and process for producing same: US5461085[P]. 1994-11-13. |
13 | ZHAOY, SUH, FANGL, et al. Superabsorbent hydrogels from poly (aspartic acid) with salt- , temperature- and pH-responsiveness properties[J]. Polymer, 2005, 46(14):5368-5376. |
14 | ZHAOY, FANGL, TANT. Optimization of the preparation of a poly (aspartic acid) superabsorbent resin with response surface methodology[J]. Journal of Applied Polymer Science, 2006, 102(3):2616-2622. |
15 | GYARMATIB, NEMETHYA, SZILAGYIA. Reversible response of poly(aspartic acid) hydrogels to external redox and pH stimuli[J]. RSC Advances, 2014, 17(4):8764-8771. |
16 | SATTARIS, TEHRANIA, ADELIM. pH-Responsive hybrid hydrogels as antibacterial and drug delivery systems[J]. Polymers, 2018, 10(6): 660. |
17 | WANGY, XUEM, WEIJ, et al. Novel solvent-free synthesis and modification of polyaspartic acid hydrogel[J]. RSC Advances, 2012,30(2):11592-11600. |
18 | MENGH, ZHANGX, SUNS, et al. Preparation of γ-aminopropyltriethoxysilane cross-linked poly (aspartic acid) superabsorbent hydrogels without organic solvent[J]. Journal of Biomaterials Science: Polymer Edition, 2016, 27(2):133-143. |
19 | MENGH, ZHANGX, CHENQ, et al. Preparation of poly (aspartic acid) superabsorbent hydrogels by solvent-free processes[J]. Journal of Polymer Engineering, 2015, 35(7):647-655. |
20 | GIAMMONAG, PITARRESIG, TOMARCHIOV, et al. New hydrogel matrices based on chemical crosslinked α,β-polyasparthydrazide: synthesis, characterization and in vivo biocompatibility studies[J]. International Journal of Pharmaceutics, 1996, 127:165-175. |
21 | GYARMATIB, VAJNAB, NEMETHYA. Redox- and pH-responsive cysteamine-modified poly (aspartic acid) showing a reversible sol-gel transition[J]. Macromolecular Bioscience, 2013,13(5):633-640. |
22 | KRISCHE, MESSAGERL, GYARMTIB, et al. Redox- and pH-responsive nanogels based on thiolated poly (aspartic acid)[J]. Macromolecular Materials and Engineering, 2016, 301(3):260-266. |
23 | JURIGAD, NAGYK, JEDLOVSZKY-HAJDUA, et al. Biodegradation and osteosarcoma cell cultivation on poly (aspartic acid) based hydrogels[J]. ACS Applied Materials & Interfaces, 2016, 36(8): 23463-23476. |
24 | LIY, CHENX, LIUY, et al. Synthesis and characterization of poly (aspartic acid) composite hydrogels with inorganic MCM-41 cross-linker[J]. Iranian Polymer Journal, 2014, 23(12):907-916. |
25 | LUJ, LIY, HUD, et al. Modified poly (aspartic acid)/poly (vinyl alcohol) IPN hydrogel and its drug controlled release[J]. BioMed Research Internationa, 2015, 236745. |
26 | LUC, WANGX, WUG, et al. An injectable and biodegradable hydrogel based on poly (α,β-aspartic acid) derivatives for localized drug delivery[J]. Journal of Biomedical Materials Research: Part A, 2014, 102(3):628-638. |
27 | TRANN, QUANGT, BUI T, et al. Preparation and characterization of CO2-responsive poly(amino acid) derivatives with guanidine group[J]. Polymer Bulletin, 2015, 72(10): 2605-2620. |
28 | YANGJ, WANGF, FANGL, et al. Synthesis, characterization and application of a novel chemical sand-fixing agent-poly (aspartic acid) and its composites[J]. Environmental Pollution, 2007, 149(1):125-130. |
29 | 马娇娇, 谭天伟, 凌沛学. 聚天冬氨酸/海藻酸钠高吸水树脂的合成与评价[J]. 北京化工大学学报(自然科学版), 2010, 37(1):98-101. |
JiaojiaoMA, TANTianwei, LINPeixue. Synthesis and evaluation of a high water-absorption capacity resin composed of sodium alginate and polyaspartic acid[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2010, 37(1):98-101. | |
30 | CHENX J, CAIJ C, ZHANGZ H. Investigation of removal of Pb(Ⅱ) and Hg(Ⅱ) by a novel cross-linked chitosan-poly (asparticacid) chelating resin containing disulfide bond[J]. Colloid and Polymer Science, 2014, 292(9):2157-2172. |
31 | 梁蕊, 王晓燕, 席国喜. 新型pH敏感羧甲基壳聚糖/聚天冬氨酸水凝胶的制备及性能[J]. 化工新型材料, 2013, 41(11):37-40. |
LIANGRui, WANGXiaoyan, XIGuoxi. Preparation and properties of noval pH-sensitive CMCS/PASP hydrogel[J]. New Chemical Materials, 2013, 41(11):37-40. | |
32 | WANGZ, CHENQ, LIUM, et al. Synthesis and characterization of an injectable hyaluronic acid-polyaspartylhydrazide hydrogel[J]. Bio-Medical Materials and Engineering, 2016, 27(15):589-601. |
33 | 叶满辉, 王丽. 聚天冬氨酸/木质纤维素水凝胶的制备及吸附性能[J]. 复合材料学报, 2016, 33(9):2094-2103. |
YEManhui, WANGLi. Preparation and absorption properties of polyaspartic acid preparation and absorption properties of polyaspartic acid/lignocellulose hydrogel[J]. Acta Materiae Compositae Sinica, 2016, 33(9):2094-2103. | |
34 | ZHAOY, KANGJ, TANT. Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly (aspartic acid) and poly (acrylic acid)[J]. Polymer, 2006, 47(22):7702–7710. |
35 | LIUM, SUH, TANT. Synthesis and properties of thermo- and pH-sensitive poly (N-isopropylacrylamide )/polyaspartic acid IPN hydrogels[J]. Carbohydrate Polymers, 2012, 87(4):2425-2431. |
36 | SHARMAS, DUA A, MALIKA. Biocompatible stimuli responsive superabsorbent polymer for controlled release of GHK-Cu peptide for wound dressing application[J]. Journal of Polymer Research, 2017, 24(7): 104. |
37 | CHENX, LIJ, MAOC, et al. A novel superabsorbent composite based on poly (aspartic acid) and organo-Kaolin[J]. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2014, 51(10):799-804. |
38 | CHENX, JIAZ, SHIH, et al. Synthesis and characterization of hydroxyl poly (aspartic acid)/organic bentonite superabsorbent composite[J]. Iranian Polymer Journal, 2016, 25(6):539-548. |
39 | MA G, YANGQ, RANF, et al. High performance and low cost composite superabsorbent based on polyaspartic acid and palygorskite clay[J]. Applied Clay Science, 2015, 118:21-28. |
40 | LVS, FENGC, GAOC, et al. Multifunctional environmental smart fertilizer based on L‑aspartic acid for sustained nutrient release[J]. Journal of Agricultural and Food Chemistry, 2016, 64(24):4965-4974. |
41 | WEIJ, YANGH, CAOH, et al. Using polyaspartic acid hydrogel as water retaining agent and its effect on plants under drought stress[J]. Saudi Journal of Biological Sciences, 2016, 23(5): 654-659. |
42 | YANGJ, CAOH, WANGF, et al. Application and appreciation of chemical sand fixing agent-poly(aspartic acid) and its composites[J]. Environmental Pollution, 2007, 150(3):381-384. |
43 | YANGJ, WANGF, FANGL, et al. Synthesis, characterization and application of a novel chemical sand-fixing agent-poly (aspartic acid) and its composites[J]. Environmental Pollution, 2007, 149(1):125-130. |
44 | VAKILIM, ZAHMATKESHS, PANAHIYANM. Designed monomers and polymers poly(amide-hydrazide-imide)s containing L-aspartic acid: synthesis, characterization, and their applications in removal of heavy metal ions[J]. Designed Monomers and Polymers, 2015, 18(4):315-322. |
45 | 张鑫, 史璐皎, 刘晓云, 等. 聚天冬氨酸强化植物修复重金属污染土壤的研究[J]. 中国农学通报, 2013, 29(29):151-156. |
ZHANGXin, SHILujiao, LIUXiaoyun, et al. The research of enhancing phytoremediation of heavy metals contaminated soil with PASP[J]. Chinese Agricultural Science Bulletin, 2013, 29(29):151-156. | |
46 | LIUT, WANGR, CAOH, et al. Polyaspartic acid alleviates heavy metal toxicity in zebrafish (Danio rerio)[J]. Chemistry and Ecology, 2017, 33(7):684-693. |
47 | 叶满辉, 王丽, 杜慧琴. 聚天冬氨酸/木质纤维素水凝胶对Pb(Ⅱ)的吸附及脱附性能[J]. 高分子材料科学与工程, 2016, 32(11):63-69. |
YEManhui, WANGLi, DUHuiqin. Performance of adsorption and desorption of Pb(Ⅱ) by polyaspartic acid /lignocellulose hydrogels[J]. Polymer Materials Science and Engineering, 2016, 32(11):63-69. | |
48 | 叶满辉, 王丽. 聚天冬氨酸/木质纤维素水凝胶制备及溶胀性能研究[J]. 化工新型材料, 2017, 45(11):120-123. |
YEManhui, WANGLi. Preparation and swelling property of polyaspartic acid/lignocellulose hydrogel[J]. New Chemical Materials, 2017, 45(11):120-123. | |
49 | MANNJ, YUA, AGMONG, et al. Supramolecular polymeric biomaterials[J]. Biomaterials Science, 2018, 6(1): 10-37. |
50 | 朱健婷, 刘姗, 苏海佳. pH 敏感型聚天冬氨酸水凝胶制备工艺的优化及其释药性能[J]. 材料导报, 2010, 24(8): 100-103. |
ZHUJianting, LIUShan, SUHaijia. Study on optimization of preparing pH sensitive polyaspartic acid hydrogel and its drug release[J]. Materials Review, 2010, 24(8): 100-103. | |
51 | CAOH, ZHUJ, SUH, et al. Preparation a novel pH-sensitive blend hydrogel based on polyaspartic acid and ethylcellulose for controlled release of naproxen sodium[J]. Journal of Applied Polymer Science, 2009, 113(1):327-336. |
52 | GYARMATIB, KRISCHE, SZILAGYIA. In situ oxidation-induced gelation of poly (aspartic acid) thiomers[J]. Reactive & Functional Polymers, 2014, 84:29-36. |
53 | HORVÁTG, GYARMATIB, BERKOS, et al. Thiolated poly (aspartic acid) as potential in situ gelling, ocular mucoadhesive drug delivery system[J]. European Journal of Pharmaceutical Sciences, 2015, 67:1-11. |
54 | BUDAI-SZUCSM, KISSE, SZILAGYIB, et al. Mucoadhesive cyclodextrin-modified thiolated poly(aspartic acid) as a potential ophthalmic drug delivery system[J]. Polymers, 2018, 10(2):199. |
55 | ZHANGC, WUS, WUJ, et al. Preparation and characterization of microporous sodium poly (aspartic acid) nanofibrous hydrogel[J]. Journal of Porous Materials, 2017, 24(1):75-84. |
56 | WANGX, RENH, YANY, et al. A novel bio-based polyaspartic acid copolymer: synthesis, structure and performance of degradation[J]. Journal of Polymers and the Environment, 2018, 26(11): 4201-4210. |
57 | KURLANDE, RAGLANDR, ZHANGA, et al. pH responsive poly amino-acid hydrogels formed via silk sericin templating[J]. International Journal of Biological Macromolecules, 2014, 70: 565-571. |
58 | MASLOVAO, SENKOO, EFREMENKOE. Aspartic and glutamic acids polymers: preparation and applications in medicinal chemistry and pharmaceutics[J]. Russian Chemical Bulletin, 2018, 67(4): 614-623. |
59 | VEGA-CHACONJ, ARBELAEZM, JORGEJ, et al. pH-responsive poly(aspartic acid) hydrogel-coated magnetite nanoparticles for biomedical applications[J]. Materials Science & Engineering C: Materials for Biological Applications, 2017, 77:366-373. |
[1] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[2] | 王少凡, 周颖, 郝康安, 黄安荣, 张如菊, 吴翀, 左晓玲. 具有pH响应性的自愈合蓝光水凝胶[J]. 化工进展, 2023, 42(9): 4837-4846. |
[3] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[4] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[5] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[6] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[7] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[8] | 孙旭东, 赵玉莹, 李诗睿, 王琦, 李晓健, 张博. 我国地方性氢能发展政策的文本量化分析[J]. 化工进展, 2023, 42(7): 3478-3488. |
[9] | 徐国彬, 刘洪豪, 李洁, 郭家奇, 王琪. ZnO量子点水性喷墨荧光墨水制备及性能[J]. 化工进展, 2023, 42(6): 3114-3122. |
[10] | 冯琬淇, 哈尼夏·巴合提null, 葛雨璇, 赵俭波. 磁性PASP/PAM半互穿水凝胶的制备及性能[J]. 化工进展, 2023, 42(6): 3130-3137. |
[11] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[12] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[13] | 金涌, 程易, 白丁荣, 张晨曦, 魏飞. 中国流态化技术研发史略[J]. 化工进展, 2023, 42(6): 2761-2780. |
[14] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[15] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |