化工进展 ›› 2019, Vol. 38 ›› Issue (06): 2953-2960.DOI: 10.16085/j.issn.1000-6613.2018-2039
收稿日期:
2018-10-15
出版日期:
2019-06-05
发布日期:
2019-06-05
通讯作者:
郭锦棠
作者简介:
李均星(1993—),男,硕士研究生,研究方向为油井水泥外加剂。E-mail:<email>13752328251@163.com</email>。
基金资助:
Junxing LI1(),Jintang GUO1(
),Chi ZHANG2,Pengpeng LI1
Received:
2018-10-15
Online:
2019-06-05
Published:
2019-06-05
Contact:
Jintang GUO
摘要:
针对目前固井使用的缓凝剂存在的热稳定性能不好、异常胶凝现象(结块)、水泥石抗压强度减弱、水泥浆综合性能欠佳等问题,通过水溶液自由基聚合,研制了一种新型高温缓凝剂GWR-1,并对其热稳定性能进行了评价,同时,对加入4种缓凝剂GWR-1、GWH-1、HX-400、DRH-200L的水泥浆异常胶凝现象和综合性能做了比较。微观结构分析表明:各单体参与了反应,分子量分布较为均一,分子结构高温下稳定,GWR-1的热稳定性可达350℃。GWR-1在硅酸盐水泥基复合材料中应用性能测试结果表明:加入GWR-1水泥浆的稠化温度可达160℃,高温时加量不敏感,高温抗盐性能较好,加入GWR-1的水泥浆在150℃不会发生异常胶凝现象,且其硅酸盐水泥石的强度发展良好,低密度和高密度的水泥浆的综合性能优于加入其他3种缓凝剂的水泥浆。
中图分类号:
李均星, 郭锦棠, 张弛, 李鹏鹏. 一种新型缓凝剂的制备及其在水泥基复合材料中的应用[J]. 化工进展, 2019, 38(06): 2953-2960.
Junxing LI, Jintang GUO, Chi ZHANG, Pengpeng LI. Synthesis of a novel retarder and its application in cement matrix composites[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2953-2960.
编号 | A m(AMPS)∶m(IA)∶ m(NVP)∶m(AA)∶m(SSS) | B APS加量(占单体总质量)/% | C 温度/℃ | D pH | 稠化时间 /min |
---|---|---|---|---|---|
1 | 6.5∶0.5∶1∶0.75∶1.25 | 0.5 | 50 | 2 | 312 |
2 | 6.5∶0.5∶1∶0.75∶1.25 | 1 | 55 | 3 | 304 |
3 | 6.5∶0.5∶1∶0.75∶1.25 | 1.5 | 60 | 4 | 295 |
4 | 6∶1∶1∶0.75∶1.25 | 0.5 | 55 | 4 | 294 |
5 | 6∶1∶1∶0.75∶1.25 | 1 | 60 | 2 | 286 |
6 | 6∶1∶1:0.75∶1.25 | 1.5 | 50 | 3 | 275 |
7 | 5∶1.5∶1∶1∶1.5 | 0.5 | 60 | 3 | 303 |
8 | 5∶1.5∶1∶1∶1.5 | 1 | 55 | 4 | 284 |
9 | 5∶1.5∶1∶1∶1.5 | 1.5 | 50 | 2 | 301 |
K 1 | 304 | 303 | 296 | 300 | |
K 2 | 285 | 291 | 294 | 294 | |
K 3 | 296 | 290 | 295 | 291 | |
R | 16 | 13 | 2 | 9 | |
最佳水平 | A 1 | B 1 | C 1 | D 1 | |
表1 GWR-1的正交实验
编号 | A m(AMPS)∶m(IA)∶ m(NVP)∶m(AA)∶m(SSS) | B APS加量(占单体总质量)/% | C 温度/℃ | D pH | 稠化时间 /min |
---|---|---|---|---|---|
1 | 6.5∶0.5∶1∶0.75∶1.25 | 0.5 | 50 | 2 | 312 |
2 | 6.5∶0.5∶1∶0.75∶1.25 | 1 | 55 | 3 | 304 |
3 | 6.5∶0.5∶1∶0.75∶1.25 | 1.5 | 60 | 4 | 295 |
4 | 6∶1∶1∶0.75∶1.25 | 0.5 | 55 | 4 | 294 |
5 | 6∶1∶1∶0.75∶1.25 | 1 | 60 | 2 | 286 |
6 | 6∶1∶1:0.75∶1.25 | 1.5 | 50 | 3 | 275 |
7 | 5∶1.5∶1∶1∶1.5 | 0.5 | 60 | 3 | 303 |
8 | 5∶1.5∶1∶1∶1.5 | 1 | 55 | 4 | 284 |
9 | 5∶1.5∶1∶1∶1.5 | 1.5 | 50 | 2 | 301 |
K 1 | 304 | 303 | 296 | 300 | |
K 2 | 285 | 291 | 294 | 294 | |
K 3 | 296 | 290 | 295 | 291 | |
R | 16 | 13 | 2 | 9 | |
最佳水平 | A 1 | B 1 | C 1 | D 1 | |
稠化温度/℃ | 缓凝剂加量/% | 初始稠度/Bc | 过渡时间/min | 稠化时间/min |
---|---|---|---|---|
140 | 2 | 10 | 2 | 301 |
150 | 2 | 9 | 3 | 269 |
160 | 2 | 12 | 2 | 241 |
140 | 3 | 10 | 3 | 339 |
150 | 3 | 12 | 2 | 299 |
160 | 3 | 11 | 2 | 266 |
140 | 4 | 9 | 2 | 372 |
150 | 4 | 11 | 3 | 325 |
160 | 4 | 12 | 2 | 293 |
表3 GWR-1耐高温性能
稠化温度/℃ | 缓凝剂加量/% | 初始稠度/Bc | 过渡时间/min | 稠化时间/min |
---|---|---|---|---|
140 | 2 | 10 | 2 | 301 |
150 | 2 | 9 | 3 | 269 |
160 | 2 | 12 | 2 | 241 |
140 | 3 | 10 | 3 | 339 |
150 | 3 | 12 | 2 | 299 |
160 | 3 | 11 | 2 | 266 |
140 | 4 | 9 | 2 | 372 |
150 | 4 | 11 | 3 | 325 |
160 | 4 | 12 | 2 | 293 |
编号 | 缓凝剂加量/% | 盐水含量/% | 稠化时间/min | 稠化温度/℃ |
---|---|---|---|---|
1 | 1.5 | 15 | 282 | 130 |
2 | 2 | 15 | 305 | 130 |
3 | 2.5 | 15 | 323 | 130 |
4 | 2 | 0 | 284 | 130 |
5 | 2 | 5 | 290 | 130 |
6 | 2 | 10 | 287 | 130 |
表4 缓凝剂GWR-1高温抗盐性
编号 | 缓凝剂加量/% | 盐水含量/% | 稠化时间/min | 稠化温度/℃ |
---|---|---|---|---|
1 | 1.5 | 15 | 282 | 130 |
2 | 2 | 15 | 305 | 130 |
3 | 2.5 | 15 | 323 | 130 |
4 | 2 | 0 | 284 | 130 |
5 | 2 | 5 | 290 | 130 |
6 | 2 | 10 | 287 | 130 |
类型 | 温度/℃ | 密度/g·cm-3 | 流动度/cm | 游离液含量/% | 失水量/mL | 稠化时间/min | 过渡时间/min | 24h的强度/MPa |
---|---|---|---|---|---|---|---|---|
GWR-1 | 120 | 1.90 | 22 | 0 | 41 | 330 | 5 | 14.1 |
130 | 1.51 | 24 | 0.02 | 37 | 298 | 3 | 8.4 | |
140 | 2.20 | 20 | 0.01 | 35 | 278 | 8 | 16.5 | |
150 | 2.50 | 21 | 0 | 40 | 239 | 10 | 20.3 | |
GWH-1 | 120 | 1.90 | 25 | 0.03 | 39 | 321 | 6 | 12.4 |
130 | 1.51 | 22 | 0.04 | 45 | 286 | 8 | 2.1 | |
140 | 2.20 | 23 | 0.01 | 44 | 264 | 14 | 14.5 | |
150 | 2.50 | 21 | 0.02 | 50 | 225 | 17 | 7.2 | |
HX-400 | 120 | 1.90 | 24 | 0.03 | 39 | 328 | 4 | 15.1 |
130 | 1.51 | 22 | 0.02 | 46 | 276 | 9 | 3.2 | |
140 | 2.20 | 23 | 0.02 | 42 | 259 | 6 | 17.2 | |
150 | 2.50 | 20 | 0.03 | 44 | 229 | 16 | 11.9 | |
DRH-200L | 120 | 1.90 | 21 | 0.02 | 38 | 339 | 11 | 13.6 |
130 | 1.51 | 23 | 0.05 | 49 | 300 | 5 | 2.5 | |
140 | 2.20 | 20 | 0.01 | 46 | 268 | 13 | 18.3 | |
150 | 2.50 | 24 | 0.03 | 42 | 231 | 14 | 10.4 |
表5 水泥浆的综合性能比较
类型 | 温度/℃ | 密度/g·cm-3 | 流动度/cm | 游离液含量/% | 失水量/mL | 稠化时间/min | 过渡时间/min | 24h的强度/MPa |
---|---|---|---|---|---|---|---|---|
GWR-1 | 120 | 1.90 | 22 | 0 | 41 | 330 | 5 | 14.1 |
130 | 1.51 | 24 | 0.02 | 37 | 298 | 3 | 8.4 | |
140 | 2.20 | 20 | 0.01 | 35 | 278 | 8 | 16.5 | |
150 | 2.50 | 21 | 0 | 40 | 239 | 10 | 20.3 | |
GWH-1 | 120 | 1.90 | 25 | 0.03 | 39 | 321 | 6 | 12.4 |
130 | 1.51 | 22 | 0.04 | 45 | 286 | 8 | 2.1 | |
140 | 2.20 | 23 | 0.01 | 44 | 264 | 14 | 14.5 | |
150 | 2.50 | 21 | 0.02 | 50 | 225 | 17 | 7.2 | |
HX-400 | 120 | 1.90 | 24 | 0.03 | 39 | 328 | 4 | 15.1 |
130 | 1.51 | 22 | 0.02 | 46 | 276 | 9 | 3.2 | |
140 | 2.20 | 23 | 0.02 | 42 | 259 | 6 | 17.2 | |
150 | 2.50 | 20 | 0.03 | 44 | 229 | 16 | 11.9 | |
DRH-200L | 120 | 1.90 | 21 | 0.02 | 38 | 339 | 11 | 13.6 |
130 | 1.51 | 23 | 0.05 | 49 | 300 | 5 | 2.5 | |
140 | 2.20 | 20 | 0.01 | 46 | 268 | 13 | 18.3 | |
150 | 2.50 | 24 | 0.03 | 42 | 231 | 14 | 10.4 |
1 | 张清玉, 邹建龙, 谭文礼, 等 . 高温深井固井技术研究进展[J]. 石油天然气学报, 2005, 27(1): 219-220. |
ZHANG Qingyu , ZOU Jianlong , TAN Wenli , et al . Progress of high temperature deep well completion techniques[J]. Journal of Oil and Gas Technology, 2005, 27(1): 219-220. | |
2 | HURNAUS T , PLANK J . Synthesis, characterization and performance of a novel phosphate-modified fluid loss additive useful in oil well cementing[J]. Journal of Natural Gas Science and Engineering, 2016, 36:165-174. |
3 | 郭锦棠,夏修建,刘硕琼,等 . 适用于长封固段固井的新型高温缓凝剂HTR-300L[J]. 石油勘探与开发, 2013, 40(5): 611-615. |
GUO Jintang , XIA Xiujian , LIU Shuoqiong , et al . A high temperature retarder HTR-300L used in long cementing interval[J]. Petroleum Exploration and Development,2013,40(5): 611-615. | |
4 | PYANTINA T , SUGAMA T , GILL S . Retarders' effects on some properties of Class G cement cured at 80℃[J]. Advances in Cement Research,2015, 26(4):205-212. |
5 | 赵岳, 沙林浩, 王建东, 等 . 油井水泥高温缓凝剂特性及发展浅析[J]. 钻井液与完井液, 2011, 28(s1): 54-58. |
ZHAO Yue , SHA Linhao , WANG Jiandong , et al . Characteristic and development analysis of high temperature oil well cement retarder[J]. Drilling Fluid & Completion Fluid, 2011, 28(s1): 54- 58. | |
6 | 汪晓静, 姚晓, 阮玉媛 . 新型油井水泥低滤失高温缓凝剂的室内研究[J]. 钻井液与完井液, 2007, 24(2):48-49. |
7 | WANG Xiaojing , YAO Xiao , YAN Yuyuan . Indoor research on new oil well cement low filtration high temperature retarder[J]. Drilling Fluid & Completion Fluid, 2007, 24(2): 48-49. |
8 | BISHOP M , BARRON A R . Cement hydration inhibition with sucrose, tartaric acid, and lignosulfonate: analytical and spectroscopic study[J]. Industrial & Engineering Chemistry Research, 2015, 45(21): 7042-7049. |
9 | SHIRSHOVA N , BISMARCK A . In-situ preparation of polymer scaffolds in retarded cement slurries: an emulsion templating approach for rapid, on-demand strength development[J]. Cement and Concrete Composites, 2012, 34(3):337-341. |
10 | ZHANG L , CATALAN L J J , BALEC R J , et al . Effects of saccharide set retarders on the hydration of ordinary portland cement and pure tricalcium silicate[J]. Journal of the American Ceramic Society, 2010, 93(1): 279-287. |
11 | 段晓岩, 李士斌, 姜晓超, 等 . 聚羧酸类外加剂引起油井水泥浆异常胶凝现象分析[J]. 东北石油大学学报, 2011, 35(5):79-83. |
DUAN Xiaoyan , LI Shibin , JIANG Xiaochao , et al . Analysis of abnormal gelation of oil well cement slurry caused by polycarboxylate admixture[J]. Journal of Northeast Petroleum University, 2011, 35(5): 79-83. | |
12 | CHEN D , GUO J T , XIA X J , et al . Abnormal gelation phenomenon of Class G oil well cement incorporating polycarboxylic additives and its countermeasures[J]. Construction & Building Materials, 2017, 149: 279-288. |
13 | GUO S , BU Y , LIU H , et al . The abnormal phenomenon of Class G oil well cement endangering the cementing security in the presence of retarder[J]. Construction & Building Materials, 2014, 54(54):118-122. |
14 | 全国石油天然气标准化技术委员会 . 油井水泥实验方法: GB/T 19139—2003[S]. 北京:中国标准出版社,2013. |
China Natural Gas Standardization Techology Committee . Testing of well cements: GB/T 19139—2003[S]. Beijing: Standards Press of China, 2013. | |
15 | 国家发展和改革委员会 . 油井水泥外加剂评价方法: SY/T SY/T 5504.1―2005[S]. 北京: 石油工业出版社, 2015. |
National Development and Reform Commission . Evaluation method for well cement additives-Part1: Retarder: SY/T 5504.1―2005[S]. Beijing: Petroleum Industry Press, 2015. | |
16 | HOLLAND B J , HAY J N . The kinetics and mechanisms of the thermal degradation of poly(methyl methacrylate) studied by thermal nalysis-Fourier transform infrared spectroscopy[J]. Polymer, 2001, 42(11): 4825-4835. |
17 | MIZUSE K , HASEGAWA H , MIKAMI N , et al . Infrared and electronic spectroscopy of Benzene-Ammonia cluster radical cations [C6H6(NH3)1,2]+: observation of isolated and microsolvated σ-complexes[J]. Journal of Physical Chemistry A, 2010, 114(42):11060-11069. |
18 | 邹双 . 耐高温油井水泥缓凝剂的合成与研究[D]. 天津: 天津大学, 2015: 37-38. |
ZOU Shuang . Synthesis and research of high temperature oil well cement retarder [D]. Tianjin: Tianjin University, 2015: 37-38. | |
19 | 赵天增 . 核磁共振氢谱[M]. 北京: 北京大学出版社,1983: 30-40. |
ZHAO Tianzeng . 1H-NMR[M]. 北京: Beijing University Press, 1983: 30-40. | |
20 | LU Y , LI M , GUO Z , et al . A novel high temperature retarder applied to a long cementing interval[J]. RSC Advances, 2016, 6(17):14421-14426. |
21 | ZHANG H , ZHUANG J , HUANG S , et al . Synthesis and performance of itaconic acid/acrylamide/sodium styrene sulfonate as a self-adapting retarder for oil well cement[J]. RSC Advances, 2015, 5(68): 55428-55437. |
22 | 吕斌, 张善德, 吴广兴, 等 . 可抑制稠化异常的新型油井水泥缓凝剂的研究[J]. 钻井液与完井液, 2017, 34(5): 67-72. |
Bin LÜ , ZHANG Shande , WU Guangxing , et al . Study on a new oil well cement retarder capable of suppressing thickening anomalies[J]. Drilling Fluids & Completion Fluid, 2017, 34(5): 67-72. | |
23 | 韩福彬, 孔凡军, 姜宏图, 等 . 微膨增韧胶乳防气窜水泥浆的实验研究[J]. 钻井液与完井液, 2008, 25(5): 52-53. |
HAN Fubin , KONG Fanjun , JIANG Hongtu , et al . Experimental study on anti-gas cement slurry of micro-expansion toughened latex[J]. Drilling Fluid & Completion Fluid, 2008, 25(5): 52-53. |
[1] | 李云闯, 谢方明, 席亚男, 万新月, 孙玉虎, 赵永峰, 李根, 刘宏海, 高雄厚, 刘洪涛. 高水热稳定性介孔分子筛的低成本合成研究进展[J]. 化工进展, 2023, 42(4): 1877-1884. |
[2] | 张晨光, 封硕, 邢玉烨, 沈伯雄, 苏立超. 柴油车用NH3-SCR铜基分子筛催化剂孤立态Cu2+研究进展[J]. 化工进展, 2023, 42(3): 1321-1331. |
[3] | 李艺凡, 王志鹏. 带有周期性扰流结构的微通道内流动与传热特性[J]. 化工进展, 2022, 41(6): 2893-2901. |
[4] | 林清宇, 王祝, 冯振飞, 凌彪, 陈镇. 扭带结构影响管内传热与熵产的研究进展[J]. 化工进展, 2022, 41(11): 5709-5721. |
[5] | 罗继永, 张道海, 周密, 田琴, 秦舒浩. PBT/TPU/DOPO-MA阻燃复合材料的制备及性能[J]. 化工进展, 2020, 39(8): 3221-3229. |
[6] | 辛华, 杨江鹏, 徐敬尧, 王静会, 赵星, 郭兵. 有机硅协同改性含氟聚氨酯[J]. 化工进展, 2018, 37(11): 4444-4450. |
[7] | 郭亚军, 胡立红, 张娜, 周永红. 纳米SiO2-木质素基酚醛泡沫的热稳定性及韧性表征[J]. 化工进展, 2017, 36(12): 4569-4574. |
[8] | 张蒙蒙, 赵风清. 青霉素废菌渣微波水解制备复合氨基酸及应用[J]. 化工进展, 2017, 36(06): 2275-2281. |
[9] | 魏志国, 李华峰, 柯汉兵, 张克龙. 三叶孔板强化换热性能及机理分析[J]. 化工进展, 2017, 36(02): 465-472. |
[10] | 崔喜, 刘冰灵, 赫崇衡, 田恒水. 脂肪族聚醚型聚氨酯弹性体热降解机理及热稳定性[J]. 化工进展, 2016, 35(11): 3585-3589. |
[11] | 陈缘博, 包慧敏, 苗海龙, 李晓林, 王益庆, 郑广宇. 氧化破胶剂过硫酸钾的安全性[J]. 化工进展, 2016, 35(10): 3267-3272. |
[12] | 张瑞, 霍锦华, 邓媛, 张直建, 陈大钧, 王吉星, 喻麟杰. 缓凝剂SN-3的制备及其对水泥浆横向弛豫时间T2分布的影响[J]. 化工进展, 2016, 35(09): 2926-2933. |
[13] | 马健, 赵基钢, 王荣杰, 舒阳, 沈本贤. 基于分子模拟的不溶性硫黄稳定剂的性能[J]. 化工进展, 2016, 35(03): 706-710. |
[14] | 赵莹, 梁骁男, 李芹, 于小荣, 陈大钧. 高温缓凝剂LY的合成及在低密度水泥浆中的应用[J]. 化工进展, 2015, 34(08): 3124-3127,3141. |
[15] | 李惟毅, 梁娜, 孟金英, 贾向东, 李志会. 基液氨浓度对卡琳娜循环不同目标参数的影响[J]. 化工进展, 2015, 34(04): 957-964. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 586
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 410
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |