1 |
霍兆义, 尹洪超, 赵亮, 等. 国内换热网络综合方法研究进展与展望[J]. 化工进展, 2012, 31(4): 726-731.
|
|
HUOZ Y, YINH C, ZHAOL, et al. Process and prospect for the methodology of heat exchanger network synthesis in China[J]. Chemical Industry and Engineering Progress, 2012, 31(4): 726-731.
|
2 |
罗雄麟, 侯本权, 孙琳. 结构可观的换热网络温度测点分析及控制系统设计[J]. 化工学报, 2012, 63(1): 146-156.
|
|
LUOX L, HOUB Q, SUNL. Temperature measuring point analysis and control system design of heat exchange networks based on structural observability[J]. CIESC Journal, 2012, 63(1): 146-156.
|
3 |
李洁, 侯来灵, 李多民. 换热器结垢与清洗[J]. 广东化工, 2009, 36(1): 57-58.
|
|
LIJ, HOUL L, LID M. Fouling and cleaning of heat exchanger[J]. Gugangdong Chemical Industry, 2009, 36(1): 57-58.
|
4 |
侯本权, 孙琳, 罗雄麟. 基于结构可控性分析的换热网络旁路优化设计[J]. 化工学报, 2011, 62(5): 1326-1338.
|
|
HOUB Q, SUNL, LUOX L. Optimal design of bypass location on heat exchanger networks based on structural controllability[J]. CIESC Journal, 2011, 62(5): 1326-1338.
|
5 |
ERNSTP, FIEGG, LUOX. Efficient synthesis of large-scale heat exchanger networks using monogenetic algorithm[J]. Heat & Mass Transfer, 2010, 46(10): 1087-1096.
|
6 |
倪锦, 崔国民, 姜慧, 等. 换热网络的柔性识别及基于旁路调节的运行优化[J]. 化工进展, 2010, 29(1): 17-24.
|
|
NIJ, CUIG M, JIANGH, et al. Flexibility identification and operation optimization based on by-pass adjustment of heat exchanger networks[J]. Chemical Industry and Engineering Progress, 2010, 29(1): 17-24.
|
7 |
HERNÁNDEZS, BALCAZAR-LÓPEZL, SÁNCHEZ-MÁRQUEZJ A, et al. Controllability and operability analysis of heat exchanger networks including bypasses[J]. Chemical & Biochemical Engineering Quarterly, 2010, 24(1): 23-28.
|
8 |
孙琳, 侯本权, 罗雄麟. 具有旁路控制的换热网络结构可控性分析[J]. 化工学报, 2012, 63(2): 530-537.
|
|
SUNL, HOUB Q, LUOX L. Structural controllability analysis for heat exchanger networks with bypass control[J]. CIESC Journal, 2012, 63(2): 530-537.
|
9 |
孙琳,罗雄麟. 换热网络控制分析与设计研究进展[J]. 化工进展, 2008, 27(8): 1143-1148.
|
|
SUNL, LUOX L. Advances in analysis and design of heat exchanger networks control[J]. Chemical Industry and Engineering Progress, 2008, 27(8): 1143-1148.
|
10 |
沈颖达, 孙琳, 罗雄麟. 低灵敏度换热网络的旁路优化设计[J]. 西安交通大学学报, 2017, 51(4): 142-148.
|
|
SHENY D, SUNL, LUOX L. Bypass optimal design of heat exchanger networks with low sensitivity[J].Journal of Xi’an Jiaotong University , 2017, 51(4): 142-148.
|
11 |
LUOX L, SUNL, ZHANGJ. Optimal design of bypass location on heat exchanger networks[J]. Journal of Chemical Industry & Engineering, 2008, 59(3): 646-652.
|
12 |
SUNL, LUOX L, HOUB Q, et al. Bypass selection for control of heat exchanger network[J]. Chinese Journal of Chemical Engineering, 2013, 21(3): 276-284.
|
13 |
GUS, LIUL, DUJ, et al. Active bypass design for optimal operation of heat exchanger networks[C]//6th International Symposium on Advanced Control of Industrial Processes. Taipei, Taiwan: IEEE2017: 55-60.
|
14 |
JIANGZ Q, ZHOUW X, XUB, et al. Process flow diagram of an ammonia plant as a complex network[J]. AIChE Journal, 2007, 53(2): 423–428.
|
15 |
CAIE, LIUD, LIANGL, et al. Monitoring of chemical industrial processes using integrated complex network theory with PCA[J]. Chemometrics & Intelligent Laboratory Systems, 2015, 140(27): 22-35.
|
16 |
王政, 孙锦程, 刘晓强, 等. 基于复杂网络理论的大型换热网络节点重要性评价[J]. 化工进展, 2017, 36(5): 1581-1588.
|
|
WANGZ, SUNJ C, LIUX Q, et al. Evaluate the node importance for large heat exchanger network based on complex network theory[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1581-1588.
|
17 |
LIUY Y, SLOTINEJ J, BARABÁSIA L. Controllability of complex networks[J]. Nature, 2011, 473(7346): 167-173.
|
18 |
YUANZ Z, ZHAOC, DIZ R, et al. Exact controllability of complex networks[J]. Nature Communications, 2013, 4(2447): 1-9.
|
19 |
GAOJ, LIUY Y, D'SOUZAR M, et al. Target control of complex networks [J]. Nature Communications, 2015, 5(5415): 1-8.
|
20 |
孙锦程. 基于复杂网络理论的换热网络节点重要性研究[D]. 青岛: 青岛科技大学, 2017.
|
|
SUNJ C. The research of node importance of heat exchanger networks based on complex networks theory[D]. Qingdao: Qingdao University of Science and Technology, 2017.
|
21 |
刘晓强, 王政, 董云青, 等. 基于复杂网络理论的换热网络边重要性排序及其控制驱动边识别[J]. 计算机与应用化学, 2018, 35(4):277-299.
|
|
LIUX Q, WANGZ, DONGY Q, et al. Ordering of the importance of heat exchanger networks based on complex network theory and its control drive moving edge recognition[J]. Computers and Applied Chemistry, 2018, 35(4):277-299.
|
22 |
LIZ H. Method for incorporation of controllability in heat exchanger network synthesis by integrating mathematical programming and knowledge engineering[J]. Chinese Journal of Chemical Engineering, 2002, 10(6): 711-716.
|
23 |
HUSSEINM H, MOSELHYH, ALY S, et al. A new strategy to synthesis an optimum controllable HEN by using fuzzy analogical gates[J]. International Journal of Computer Applications, 2013, 83(3): 41-55.
|
24 |
聂森, 王旭文, 汪秉宏. 复杂网络可控性的研究概况[J]. 现代物理知识, 2015,27(4): 9-11.
|
|
NIES, WANGX W, WANGB H. Survey of the controllability of complex networks[J]. Modern Physics, 2015, 27(4): 9-11.
|
25 |
SLOTINEJ J E. Applied nonlinear control[M]//LI W. 2nd ed. Beijing: China Machine Press, 2004.
|
26 |
尹红丽, 纪志坚, 张嗣瀛. 复杂网络的可控性及算法[J]. 系统科学与数学, 2015, 35(11): 1255-1263.
|
|
YINH L, JIZ J, ZHANGS Y. Controllability and algorithms of complex networks[J]. Journal of Systems Science and Mathematical Sciences, 2015, 35(11): 1255-1263.
|
27 |
王哲. 面向复杂网络可控性的最小驱动点集枚举及优化选取算法研究[D]. 沈阳: 东北大学, 2013.
|
|
WANGZ. Research on the enumeration algorithm and optimal selecting algorithm of the minimum driver node set for complex network controllability[D]. Shenyang: Northeastern University, 2013.
|
28 |
张琨, 李配配, 朱保平, 等. 基于PageRank的有向加权复杂网络节点重要性评估方法[J]. 南京航空航天大学学报, 2013, 45(3): 429-434.
|
|
ZHANGK, LIP P, ZHUB P, et al. Evaluation method for node importance in directed-weighted complex networks based on PageRank[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(3): 429-434.
|
29 |
BANG-JENSENJ. Digraphs: theory, algorithms and applications[M]//GUTIN G Z. Berlin: Springer Publishing Company, 2010.
|
30 |
薛等长. 基于最小路径覆盖的复杂网络目标控制的研究[D]. 西安: 西安电子科技大学, 2015.
|
|
XUED C. Study on complex network target control based on minimum path coverage[D]. Xi’an: Xi’an University of Electronic Science and Technology, 2015.
|
31 |
水春贵. 基于Aspen Tech的分馏塔用能优化及换热网络夹点分析[J]. 中外能源, 2013, 18(11): 88-93.
|
|
SHUIC G. Energy optimization of fractionation tower and pinch analysis of heat exchanger network based on Aspen Tech[J]. Sino Global Energy, 2013, 18(11): 88-93.
|
32 |
LIY S, MA D Z, ZHANGH G, et al. Critical nodes identification of power systems based on controllability of complex networks[J]. Applied Sciences, 2015, 5(3): 622-636.
|
33 |
罗雄麟, 孙琳. 张俊峰. 换热网络旁路优化设计[J]. 化工学报, 2012, 63(1): 146-156.
|
|
LUOX L, SUNL, ZHANGJ F. Optimal design of bypass location on heat exchanger networks[J]. CIESC Journal, 2012, 63(1): 146-156.
|