化工进展 ›› 2020, Vol. 39 ›› Issue (1): 14-25.DOI: 10.16085/j.issn.1000-6613.2019-0595
收稿日期:
2019-04-15
出版日期:
2020-01-05
发布日期:
2020-01-14
通讯作者:
崔国民
作者简介:
苏戈曼(1995—),女,硕士研究生,研究方向为过程系统优化。E-mail:基金资助:
Geman SU(),Guomin CUI(),Zhongkai BAO,Yuan XIAO,Aowei JIANG
Received:
2019-04-15
Online:
2020-01-05
Published:
2020-01-14
Contact:
Guomin CUI
摘要:
换热网络优化问题常以外罚函数法处理约束,赋予违反约束的不可行解较大的罚值。强制进化随机游走算法(RWCE)优化换热网络时,其非贪婪搜索机制使不可行解以一定概率被保留,从而改变全局寻优过程。本文首先分析不可行解对优化进程的影响,揭示偏移量较小的不可行解对结构进化的促进作用;然后提出差解概率动态调整策略,合理利用不可行解的正面作用,强化结构进化能力;最后,鉴于上述优化结果中偏移量较小的不可行解居多,提出一种可行化策略,通过分段罚指数和双种群优化技术促使过程中有潜力的不可行解快速返回可行域,并提升优化质量。将结合两条强化策略的改进算法应用于16股流与15股流算例,优化结果较文献最优解分别节省了0.35%、0.48%,表明改进后的算法较原算法全局搜索能力得到了显著提升。
中图分类号:
苏戈曼,崔国民,鲍中凯,肖媛,蒋奥炜. RWCE优化换热网络的不可行解影响分析及强化策略[J]. 化工进展, 2020, 39(1): 14-25.
Geman SU,Guomin CUI,Zhongkai BAO,Yuan XIAO,Aowei JIANG. Influence analysis and enhancement strategy of infeasible solutions for heat exchanger network optimization with RWCE[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 14-25.
流股 | 进口温度 /℃ | 出口温度 /℃ | 热容流率/kW·℃-1 | 换热系数/kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 327 | 40 | 100 | 0.5 |
H2 | 220 | 160 | 160 | 0.4 |
H3 | 220 | 60 | 60 | 0.14 |
H4 | 160 | 45 | 400 | 0.3 |
C1 | 100 | 300 | 100 | 0.35 |
C2 | 35 | 164 | 70 | 0.7 |
C3 | 85 | 138 | 350 | 0.5 |
C4 | 60 | 170 | 60 | 0.14 |
C5 | 140 | 300 | 200 | 0.6 |
HU | 330 | 250 | — | 0.5 |
CU | 15 | 30 | — | 0.5 |
换热器费用=2000+70A USD·a-1(A的单位为m2) | ||||
热公用工程费用=60USD·kW-1·a-1 | ||||
冷公用工程费用=6USD·kW-1·a-1 |
表1 9股流算例参数
流股 | 进口温度 /℃ | 出口温度 /℃ | 热容流率/kW·℃-1 | 换热系数/kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 327 | 40 | 100 | 0.5 |
H2 | 220 | 160 | 160 | 0.4 |
H3 | 220 | 60 | 60 | 0.14 |
H4 | 160 | 45 | 400 | 0.3 |
C1 | 100 | 300 | 100 | 0.35 |
C2 | 35 | 164 | 70 | 0.7 |
C3 | 85 | 138 | 350 | 0.5 |
C4 | 60 | 170 | 60 | 0.14 |
C5 | 140 | 300 | 200 | 0.6 |
HU | 330 | 250 | — | 0.5 |
CU | 15 | 30 | — | 0.5 |
换热器费用=2000+70A USD·a-1(A的单位为m2) | ||||
热公用工程费用=60USD·kW-1·a-1 | ||||
冷公用工程费用=6USD·kW-1·a-1 |
偏移量大小 | u1 | u2 | (u2/u1)×100%/% |
---|---|---|---|
0.00~0.25 | 10537 | 1778 | 16.9 |
0.25~0.50 | 5260 | 771 | 14.7 |
0.50~0.75 | 2468 | 325 | 13.2 |
0.75~1.00 | 1285 | 151 | 11.8 |
1.00~1.25 | 700 | 70 | 10.0 |
1.25~1.50 | 331 | 36 | 10.9 |
1.50~1.75 | 200 | 14 | 7.0 |
1.75~2.00 | 103 | 10 | 9.7 |
2.00~2.25 | 53 | 5 | 9.4 |
2.25~2.50 | 25 | 2 | 8.0 |
2.50~2.75 | 14 | 0 | 0.0 |
2.75~3.00 | 4 | 0 | 0.0 |
3.00~3.25 | 1 | 0 | 0.0 |
3.25~3.50 | 3 | 0 | 0.0 |
表2 RWCE不可行解个数统计表
偏移量大小 | u1 | u2 | (u2/u1)×100%/% |
---|---|---|---|
0.00~0.25 | 10537 | 1778 | 16.9 |
0.25~0.50 | 5260 | 771 | 14.7 |
0.50~0.75 | 2468 | 325 | 13.2 |
0.75~1.00 | 1285 | 151 | 11.8 |
1.00~1.25 | 700 | 70 | 10.0 |
1.25~1.50 | 331 | 36 | 10.9 |
1.50~1.75 | 200 | 14 | 7.0 |
1.75~2.00 | 103 | 10 | 9.7 |
2.00~2.25 | 53 | 5 | 9.4 |
2.25~2.50 | 25 | 2 | 8.0 |
2.50~2.75 | 14 | 0 | 0.0 |
2.75~3.00 | 4 | 0 | 0.0 |
3.00~3.25 | 1 | 0 | 0.0 |
3.25~3.50 | 3 | 0 | 0.0 |
偏移量大小 | u1 | u2 | (u2/u1)×100%/% |
---|---|---|---|
0.00~0.25 | 51229 | 10584 | 20.7 |
0.25~0.50 | 9654 | 1693 | 17.5 |
0.50~0.75 | 1690 | 258 | 15.3 |
0.75~1.00 | 377 | 65 | 17.2 |
1.00~1.25 | 68 | 6 | 8.8 |
1.25~1.50 | 16 | 1 | 6.3 |
1.50~1.75 | 3 | 0 | 0 |
1.75~2.00 | 2 | 0 | 0 |
2.00~2.25 | 0 | 0 | 0 |
2.25~2.50 | 0 | 0 | 0 |
2.50~2.75 | 0 | 0 | 0 |
2.75~3.00 | 0 | 0 | 0 |
3.00~3.25 | 0 | 0 | 0 |
3.25~3.50 | 0 | 0 | 0 |
表3 采用差解概率动态调整策略的不可行解个数统计表
偏移量大小 | u1 | u2 | (u2/u1)×100%/% |
---|---|---|---|
0.00~0.25 | 51229 | 10584 | 20.7 |
0.25~0.50 | 9654 | 1693 | 17.5 |
0.50~0.75 | 1690 | 258 | 15.3 |
0.75~1.00 | 377 | 65 | 17.2 |
1.00~1.25 | 68 | 6 | 8.8 |
1.25~1.50 | 16 | 1 | 6.3 |
1.50~1.75 | 3 | 0 | 0 |
1.75~2.00 | 2 | 0 | 0 |
2.00~2.25 | 0 | 0 | 0 |
2.25~2.50 | 0 | 0 | 0 |
2.50~2.75 | 0 | 0 | 0 |
2.75~3.00 | 0 | 0 | 0 |
3.00~3.25 | 0 | 0 | 0 |
3.25~3.50 | 0 | 0 | 0 |
迭代步数 | 种群1中历史最优解TAC/USD·a-1 | 种群2可行化后TAC/USD·a-1 | 可行化耗费步数 |
---|---|---|---|
5.00×106 | 2923899 | 2924403 | 25 |
7.75×106 | 2922240 | 2920012 | 33 |
1.11×107 | 2921928 | 2922789 | 14 |
1.20×107 | 2921429 | 2922543 | 35 |
1.21×107 | 2919912 | 2920831 | 48 |
表4 9股流算例历史最优解可行化前后费用情况
迭代步数 | 种群1中历史最优解TAC/USD·a-1 | 种群2可行化后TAC/USD·a-1 | 可行化耗费步数 |
---|---|---|---|
5.00×106 | 2923899 | 2924403 | 25 |
7.75×106 | 2922240 | 2920012 | 33 |
1.11×107 | 2921928 | 2922789 | 14 |
1.20×107 | 2921429 | 2922543 | 35 |
1.21×107 | 2919912 | 2920831 | 48 |
流股 | 进口温度/℃ | 出口温度/℃ | 热容流率/kW·℃-1 | 换热系数/kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 385 | 159 | 131.51 | 1.238 |
H2 | 516 | 43 | 1198.96 | 0.546 |
H3 | 132 | 82 | 378.52 | 0.771 |
H4 | 91 | 60 | 589.545 | 0.859 |
H5 | 217 | 43 | 186.216 | 1.000 |
H6 | 649 | 43 | 116 | 1.000 |
C1 | 30 | 385 | 119.1 | 1.850 |
C2 | 99 | 471 | 191.05 | 1.129 |
C3 | 437 | 521 | 377.91 | 0.815 |
C4 | 78 | 418.6 | 160.43 | 1.000 |
C5 | 217 | 234 | 1297,7 | 0.443 |
C6 | 256 | 266 | 2753 | 2.085 |
C7 | 49 | 149 | 197.39 | 1.000 |
C8 | 59 | 163.4 | 123.156 | 1.063 |
C9 | 163 | 649 | 95.98 | 1.810 |
C10 | 219 | 221.3 | 1997.5 | 1.377 |
HU | 1800 | 800 | — | 1.2 |
CU | 38 | 82 | — | 1.0 |
换热器费用=26600+4147.5A0.6 USD·a-1(A的单位为m2) 热公用工程费用=35.0USD·kW-1·a-1 冷公用工程费用=2.1USD·kW-1·a-1 |
表5 算例1参数表
流股 | 进口温度/℃ | 出口温度/℃ | 热容流率/kW·℃-1 | 换热系数/kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 385 | 159 | 131.51 | 1.238 |
H2 | 516 | 43 | 1198.96 | 0.546 |
H3 | 132 | 82 | 378.52 | 0.771 |
H4 | 91 | 60 | 589.545 | 0.859 |
H5 | 217 | 43 | 186.216 | 1.000 |
H6 | 649 | 43 | 116 | 1.000 |
C1 | 30 | 385 | 119.1 | 1.850 |
C2 | 99 | 471 | 191.05 | 1.129 |
C3 | 437 | 521 | 377.91 | 0.815 |
C4 | 78 | 418.6 | 160.43 | 1.000 |
C5 | 217 | 234 | 1297,7 | 0.443 |
C6 | 256 | 266 | 2753 | 2.085 |
C7 | 49 | 149 | 197.39 | 1.000 |
C8 | 59 | 163.4 | 123.156 | 1.063 |
C9 | 163 | 649 | 95.98 | 1.810 |
C10 | 219 | 221.3 | 1997.5 | 1.377 |
HU | 1800 | 800 | — | 1.2 |
CU | 38 | 82 | — | 1.0 |
换热器费用=26600+4147.5A0.6 USD·a-1(A的单位为m2) 热公用工程费用=35.0USD·kW-1·a-1 冷公用工程费用=2.1USD·kW-1·a-1 |
参考文献 | HU/MW | CU/MW | Units | TAC/USD·a-1 |
---|---|---|---|---|
Khorasany 等[ | 77.15 | 469.86 | 18 | 7435740(有分流) |
Zhao等[ | 38.80 | 442.37 | 16 | 7361190 |
Pav?o等[ | — | — | 17 | 7301437(有分流) |
Chen 等[ | 14.33 | 417.89 | 19 | 6989989 |
Bao 等[ | 10.66 | 414.22 | 19 | 6848726(有分流) |
Zhang 等[ | 10.62 | 414.19 | 18 | 6861111 |
本文RWCE( | 10.60 | 414.17 | 19 | 6931859 |
本文ERWCE( | 9.88 | 413.44 | 18 | 6837245 |
表6 算例1结果对比
参考文献 | HU/MW | CU/MW | Units | TAC/USD·a-1 |
---|---|---|---|---|
Khorasany 等[ | 77.15 | 469.86 | 18 | 7435740(有分流) |
Zhao等[ | 38.80 | 442.37 | 16 | 7361190 |
Pav?o等[ | — | — | 17 | 7301437(有分流) |
Chen 等[ | 14.33 | 417.89 | 19 | 6989989 |
Bao 等[ | 10.66 | 414.22 | 19 | 6848726(有分流) |
Zhang 等[ | 10.62 | 414.19 | 18 | 6861111 |
本文RWCE( | 10.60 | 414.17 | 19 | 6931859 |
本文ERWCE( | 9.88 | 413.44 | 18 | 6837245 |
流股 | 进口温度 /℃ | 出口温度 /℃ | 热容流率 /kW·℃-1 | 换热系数 /kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 180 | 75 | 30 | 2.0 |
H2 | 280 | 120 | 60 | 1.0 |
H3 | 180 | 75 | 30 | 2.0 |
H4 | 140 | 40 | 30 | 1.0 |
H5 | 220 | 120 | 50 | 1.0 |
H6 | 180 | 55 | 35 | 2.0 |
H7 | 200 | 60 | 30 | 0.4 |
H8 | 120 | 40 | 100 | 0.5 |
C1 | 40 | 230 | 20 | 1.0 |
C2 | 100 | 220 | 60 | 1.0 |
C3 | 40 | 190 | 35 | 2.0 |
C4 | 50 | 190 | 30 | 2.0 |
C5 | 50 | 250 | 60 | 2.0 |
C6 | 90 | 190 | 50 | 1.0 |
C7 | 160 | 250 | 60 | 3.0 |
HU | 325 | 325 | — | 1.0 |
CU | 25 | 40 | — | 2.0 |
换热器费用=8000+500A0.75USD·a-1(A的单位为m2) 热公用工程费用=80USD·kW-1·a-1 冷公用工程费用=10USD·kW-1·a-1 |
表7 算例2参数表
流股 | 进口温度 /℃ | 出口温度 /℃ | 热容流率 /kW·℃-1 | 换热系数 /kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 180 | 75 | 30 | 2.0 |
H2 | 280 | 120 | 60 | 1.0 |
H3 | 180 | 75 | 30 | 2.0 |
H4 | 140 | 40 | 30 | 1.0 |
H5 | 220 | 120 | 50 | 1.0 |
H6 | 180 | 55 | 35 | 2.0 |
H7 | 200 | 60 | 30 | 0.4 |
H8 | 120 | 40 | 100 | 0.5 |
C1 | 40 | 230 | 20 | 1.0 |
C2 | 100 | 220 | 60 | 1.0 |
C3 | 40 | 190 | 35 | 2.0 |
C4 | 50 | 190 | 30 | 2.0 |
C5 | 50 | 250 | 60 | 2.0 |
C6 | 90 | 190 | 50 | 1.0 |
C7 | 160 | 250 | 60 | 3.0 |
HU | 325 | 325 | — | 1.0 |
CU | 25 | 40 | — | 2.0 |
换热器费用=8000+500A0.75USD·a-1(A的单位为m2) 热公用工程费用=80USD·kW-1·a-1 冷公用工程费用=10USD·kW-1·a-1 |
参考文献 | HU/MW | CU/MW | Units | TAC/USD·a-1 |
---|---|---|---|---|
Bj?rk 和 Pettersson[ | — | — | — | 1513854(有分流) |
Bj?rk 和 Nordman[ | — | — | — | 1530063(有分流) |
Fieg[ | 10.62 | 8.24 | 15 | 1510891(有分流) |
Pav?o等[ | 10.24 | 7.86 | 19 | 1525394 |
Wang等[ | 9.52 | 7.93 | 19 | 1519250 |
Xiao等[ | 10.31 | 7.93 | 19 | 1518968 |
本文RWCE | 10.32 | 7.94 | 19 | 1519103 |
本文ERWCE( | 10.41 | 8.04 | 18 | 1511689 |
表8 算例2结果对比
参考文献 | HU/MW | CU/MW | Units | TAC/USD·a-1 |
---|---|---|---|---|
Bj?rk 和 Pettersson[ | — | — | — | 1513854(有分流) |
Bj?rk 和 Nordman[ | — | — | — | 1530063(有分流) |
Fieg[ | 10.62 | 8.24 | 15 | 1510891(有分流) |
Pav?o等[ | 10.24 | 7.86 | 19 | 1525394 |
Wang等[ | 9.52 | 7.93 | 19 | 1519250 |
Xiao等[ | 10.31 | 7.93 | 19 | 1518968 |
本文RWCE | 10.32 | 7.94 | 19 | 1519103 |
本文ERWCE( | 10.41 | 8.04 | 18 | 1511689 |
1 | YEE T F, GROSSMANN I E, KRAVANJA Z. Simultaneous optimization models for heat integration—Ⅰ. Area and energy targeting and modeling of multi-stream exchangers[J]. Computers & Chemical Engineering, 1990, 14(10): 1116-1151. |
2 | YEE T F, GROSSMANN I E. Simultaneous optimization models for heat integration—Ⅱ. Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10): 1118-1165. |
3 | HE Q, CUI G. A principle of stream arrangement based on uniformity factor for heat exchanger networks synthesis[J]. Applied Thermal Engineering, 2013, 61(2): 93-100. |
4 | ZHANG H, CUI G, XIAO Y, et al. A novel simultaneous optimization model with efficient stream arrangement for heat exchanger network synthesis[J]. Applied Thermal Engineering, 2017, 48(31): 1659-1673. |
5 | HONG X, LIAO Z, JIANG B, et al. New transshipment type MINLP model for heat exchanger network synthesis[J]. Chemical Engineering Science, 2017, 173: 537-559. |
6 | PAVÃO L V, COSTA C B B, RAVAGNANI M A S S. An enhanced stage-wise superstructure for heat exchanger networks synthesis with new options for heaters and coolers placement[J]. Industrial & Engineering Chemistry Research, 2018, 57(7): 2560-2573. |
7 | PAVÃO L V, COSTA C B B, RAVAGNANI M A S S. A new stage-wise superstructure for heat exchanger network synthesis considering substages, sub-splits and cross flows[J]. Applied Thermal Engineering, 2018(143): 719-735. |
8 | PAVÃO L V, COSTA C B B, RAVAGNANI M A S S, et al. Large-scale heat exchanger networks synthesis using simulated annealing and the novel rocket fireworks optimization[J]. AIChE Journal, 2017, 63(5): 1582-1601. |
9 | 张春伟, 崔国民, 陈上, 等. 采用结构进化策略的Lagrange乘子法优化换热网络[J]. 化工进展, 2016, 35(4): 1047-1055. |
ZHANG C W, CUI G M, CHEN S, et al. Lagrange multiplier method combined with structure evolution strategy for heat exchanger network synthesis[J]. Chemical Industry and Engineering Progress, 2016, 35(4): 1047-1055. | |
10 | ABADIE J, CARPENTIER J. Generalization of the Wolfe Reduced Gradient Method to the case of nonlinear constraints optimization[J]. Science, 1992, 117(3049): 640-641. |
11 | 赵凤治, 尉继英. 约束最优化计算方法[M]. 北京: 科学出版社, 1991: 290-328. |
ZHAO F Z, WEI J Y. Constrained optimization method [M]. Beijing: Science Press, 1991: 290-328. | |
12 | RICHARDSON J T, PALMER M R, LIEPINS G E, et al. Some guidelines for genetic algorithms with penalty functions [C]//Proceedings of the 3rd international conference on genetic algorithms. San Francisco: Morgan Kaufmann Publishers Inc., 1989: 191-197. |
13 | 方大俊, 崔国民, 许海珠, 等. 基于罚因子协进化微分算法优化换热网络[J]. 高校化学工程学报, 2015, 29(2): 407-412. |
FAND D J, CUI G M, XU H Z, et al. Optimization of heat exchanger networks with cooperation differential evolution algorithm based on penalty factors[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(2): 407-412. | |
14 | KRISHNA S B, RANG G P. Heat exchanger network retrofitting: evaluation of penalty function and feasibility approach for constraint handling [C]//LEONG Y K. Chemeca2014: processing excellence; powering our future. Western Australia, 2014: 165-173. |
15 | RAVAGNANI M A S S, SILVA A P, ARROYO P A, et al. Heat exchanger network synthesis and optimisation using genetic algorithm[J]. Applied Thermal Engineering, 2005, 25(7): 1003-1017. |
16 | SILVA A P, RAVAGNANI M A S S, et al. Optimal heat exchanger network synthesis using particle swarm optimization[J]. Optimization and Engineering, 2010, 11(3): 459-470. |
17 | YERRAMSETTY K M, MURTY C V S. Synthesis of cost-optimal heat exchanger networks using differential evolution[J]. Computers and Chemical Engineering, 2008, 32(8): 1861-1876. |
18 | PENG F, CUI G. Efficient simultaneous synthesis for heat exchanger network with simulated annealing algorithm[J]. Applied Thermal Engineering, 2015, 78: 136-149. |
19 | PAVÃO L V, COSTA C B B, RAVAGNANI M A S S. Heat exchanger network synthesis without stream splits using parallelized and simplified simulated annealing and particle swarm optimization[J]. Chemical Engineering Science, 2017, 158: 96-107. |
20 | XIAO Y, CUI G. A novel random walk algorithm with compulsive evolution for heat exchanger network synthesis[J]. Applied Thermal Engineering, 2017, 115: 1118-1127. |
21 | BRIONES V, KOKOSSIS A C. Hypertarget: a conceptual programming approach for the optimisation of industrial heat exchanger networks: Ⅱ. Retrofit design[J]. Chemical Engineering Science, 1999, 54(4): 541-561. |
22 | KHORASANY R M, FESANGHARY M. A novel approach for synthesis of cost-optimal heat exchanger networks[J]. Computers and Chemical Engineering, 2009, 33(8): 1363-1370. |
23 | ZHANG H, CUI G. Optimal heat exchanger network synthesis based on improved cuckoo search via Lévy flights[J]. Chemical Engineering Research and Design, 2018, 134: 62-79. |
24 | 鲍中凯,崔国民,陈家星.采用结构保护策略的强制进化随机游走算法优化换热网络[J]. 化工学报, 2017, 68(9): 3522-3531. |
BAO Z K, GUI G M, CHEN J X. Optimization of heat exchanger network by random walk algorithm with compulsive evolution with structure-protection strategy[J]. CIESC Journal, 2017, 68(9): 3522-3531. | |
25 | ZHAO Y H, LIANG Z, HONG C Y, et al. Simultaneous synthesis of structural-constrained heat exchanger networks with and without stream splits[J]. Canadian Journal of Chemical Engineering, 2013, 91(5): 830-842. |
26 | CHEN J, CUI G, DUAN H. Multipopulation differential evolution algorithm based on the opposition-based learning for heat exchanger network synthesis[J]. Numerical Heat Transfer Part A:Applications, 2017, 72(2): 126-140. |
27 | BJÖRK K M, PETTERSSON F. Optimization of large-scale heat exchanger network synthesis problems[C]//Proceeding of the IASTED International Conference on Modelling, Simulation and Optimatization, 2003: 313-318. |
28 | FIEG G, LUO X, JEŻOWSKI J. A monogenetic algorithm for optimal design of large-scale heat exchanger networks[J]. Chemical Engineering and Processing, 2009, 48(11/12): 1506-1516. |
29 | BJÖRK K M, NORDMAN R. Solving large-scale retrofit heat exchanger network synthesis problems with mathematical optimization methods[J]. Chemical Engineering and Processing, 2005, 44(8): 869-876. |
30 | WANG J, CUI G, XIAO Y, et al. Bi-level heat exchanger network synthesis with evolution method for structure optimization and memetic particle swarm optimization for parameter optimization[J]. Engineering Optimization, 2017, 49(3): 401-416. |
[1] | 朱添宇, 孙琳, 任超, 罗雄麟. 基于全周期持续节能的换热网络滑动窗口分析与裕量缓释优化控制[J]. 化工进展, 2023, 42(3): 1195-1205. |
[2] | 蒋宁, 张元毅, 范伟, 赵世超, 徐新杰, 徐英杰. 基于智能预测和机理模型的换热网络清洗决策[J]. 化工进展, 2022, 41(4): 1781-1792. |
[3] | 刘洪彬, 崔国民, 周志强, 肖媛, 张冠华, 杨其国. 应用于换热网络优化的并行双层RWCE算法[J]. 化工进展, 2022, 41(10): 5247-5258. |
[4] | 徐玥, 崔国民. 基于节点配置策略的有分流换热网络优化性能探析[J]. 化工进展, 2021, 40(7): 3608-3616. |
[5] | 蒋宁, 赵世超, 谢小东, 范伟, 徐新杰, 徐英杰. 利用余热回收多能互补技术的原油蒸馏装置热集成系统的优化改造[J]. 化工进展, 2021, 40(2): 652-663. |
[6] | 邵缨迪, 胡建杭, 刘慧利, 蔡正达. 异丁烯提纯装置换热网络的能效分析[J]. 化工进展, 2020, 39(S2): 57-65. |
[7] | 蒋宁, 范伟, 谢小东, 郭风元, 李恩腾, 赵世超. NSGA-Ⅱ和NSGA-Ⅲ应用于换热网络多目标优化的对比[J]. 化工进展, 2020, 39(7): 2534-2547. |
[8] | 苏戈曼, 崔国民, 肖媛, 赵倩倩. 换热网络优化中换热单元生成频次的影响分析及策略改进[J]. 化工进展, 2020, 39(10): 3879-3891. |
[9] | 孙琳, 杨明达, 罗雄麟. 基于持续节能的换热网络缓释优化[J]. 化工进展, 2020, 39(10): 3941-3948. |
[10] | 刘昶,李士雨,谢晓兰. 考虑间接换热额外换热温差的间歇过程储热集成[J]. 化工进展, 2020, 39(1): 72-79. |
[11] | 蒋宁,谢小东,范伟,徐英杰. 数据驱动的固定拓扑结构换热网络优化改造方法[J]. 化工进展, 2019, 38(10): 4452-4460. |
[12] | 董云青, 王政, 徐一凡, 杨燕霞, 贾小平, 王芳. 基于复杂网络控制理论的换热网络旁路位置确定[J]. 化工进展, 2019, 38(07): 3046-3055. |
[13] | 杨蕊, 庄钰, 刘琳琳, 张磊, 都健. 功热交换网络综合的研究进展[J]. 化工进展, 2019, 38(06): 2550-2558. |
[14] | 蒋宁, 韩文巧, 郭风元, 徐英杰. 基于实际热负荷分布的换热网络优化改造[J]. 化工进展, 2018, 37(08): 2935-2941. |
[15] | 邓炜栋, 崔国民, 陈家星, 朱玉双. 带惩罚的逆梯度进化算法应用于换热网络[J]. 化工进展, 2018, 37(07): 2500-2509. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |