[1] DEBOWSKI M, ZIELINSKI M, GRALA A, et al. Algae biomass as an alternative substrate in biogas production technologies-review[J]. Renewable & Sustainable Energy Reviews, 2013, 27:596-604.
[2] U.S.DOE. National algal biofuels technology roadmap[R]. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. DOE/EE-0332. 2010.
[3] MEHRABADI A, CRAGGS R, FARID M M. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production[J]. Bioresource Technology, 2015, 184:202-214.
[4] SIALVE B, BERNET N, BERNARD O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable[J]. Biotechnology Advances, 2009, 27(4):409-416.
[5] BOHUTSKYI P, BOUWER E. Biogas production from algae and cyanobacteria through anaerobic digestion:a review, analysis, and research needs[M]//Advanced Biofuels and Bioproducts. New York:Springer, 2013:873-975.
[6] MENDEZ L, MAHDY A, BALLESTEROS M, et al. Chlorella vulgaris, vs cyanobacterial biomasses:comparison in terms of biomass productivity and biogas yield[J]. Energy Conversion & Management, 2015, 92:137-142.
[7] POLAKOVICOVA G, KUSNIR P, NAGYOVA S, et al. Process integration of algae production and anaerobic digestion[C]//15th PRES Conference Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction. 2012:1129-1134.
[8] CAPORGNO M P, TALEB A, OLKIEWICZ M, et al. Microalgae cultivation in urban wastewater:nutrient removal and biomass production for biodiesel and methane[J]. Algal Research, 2015, 10:232-239.
[9] MAHDY A, MENDEZ L, TOMÁSPEJÓ E, et al. Influence of enzymatic hydrolysis on the biochemical methane potential of Chlorella vulgaris and Scenedesmus sp.[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(5):1299-1305.
[10] SCHWEDE S, REHMAN Z U, GERBER M, et al. Effects of thermal pretreatment on anaerobic digestion of Nannochloropsis salina, biomass[J]. Bioresource Technology, 2013, 143(6):505-511.
[11] BOHUTSKYI P, CHOW S, KETTER B, et al. Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion[J]. Applied Energy, 2015, 154:718-731.
[12] DARLEY W M. Biochemical composition. in:the biology of diatoms[M], (Ed.) D. Werner. Berkeley and Los Angeles, California:University of California:Press, 1997:198-217.
[13] ZHAO B S, MA J W, ZHAO Q B, et al. Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production[J]. Bioresource Technology, 2014, 161(11):423-430.
[14] ZAMALLOA C, BOON N, VERSTRAETE W. Anaerobic digestibility of Scenedesmus obliquus, and Phaeodactylum tricornutum, under mesophilic and thermophilic conditions[J]. Applied Energy, 2012, 92(2):733-738.
[15] PASSOS F, HOM-DIAZ A, BLANQUEZ P, et al. Improving biogas production from microalgae by enzymatic pretreatment[J]. Bioresource Technology, 2016, 199:347-351.
[16] DEBOWSKI M, ZIELIN′SKI M, KISIELEWSKA M, et al. Efficiency of methane fermentation of waste microalgae biomass (WMAB) collected in processes of reclamation of eutrophicated water reservoirs[J]. Environmental Earth Sciences, 2016, 75(6):1-12.
[17] GONZALEZFERNANDEZ C, SIALVE B, MOLINUEVOSALCES B. Anaerobic digestion of microalgal biomass:challenges, opportunities and research needs[J]. Bioresource Technology, 2015, 198:896.
[18] KINNUNEN V, CRAGGS R, RINTALA J. Influence of temperature and pretreatments on the anaerobic digestion of wastewater grown microalgae in a laboratory-scale accumulating-volume reactor[J]. Water Research, 2014, 57(5):247-257.
[19] ARCILA J S, BUITRÓN G. Microalgae-bacteria aggregates:effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(11):2862-2870.
[20] HERNÁNDEZ D, RIAÑO B, COCA M, et al. Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass[J]. Bioresource Technology, 2013, 135(2):598.
[21] ALZATE M E, MUÑOZ R, ROGALLA F, et al. Biochemical methane potential of microalgae biomass after lipid extraction[J]. Chemical Engineering Journal, 2014, 243(5):405-410.
[22] YAN L, GAO M T, HUA D L, et al. One-stage and two-stage anaerobic digestion of lipid-extracted algae[J]. Annals of Microbiology, 2015, 65(3):1465-1471.
[23] BROWNE J D, ALLEN E, MURPHY J D, et al. Evaluation of the biomethane potential from multiple waste streams for a proposed community scale anaerobic digester[J]. Environmental Technology, 2013, 34(13-16):2027.
[24] YUAN X, SHI X, ZHANG D, et al. Biogas production and microcystin biodegradation in anaerobic digestion of blue algae[J]. Energy & Environmental Science, 2011, 4(4):1511-1515.
[25] PASSOS F, FERRER I. Microalgae conversion to biogas:thermal pretreatment contribution on net energy production[J]. Environmental Science & Technology, 2014, 48(12):7171.
[26] SANTOS-BALLARDO D U, ROSSI S, REYES-MORENO C, et al. Microalgae potential as a biogas source:current status, restraints and future trends[J]. Reviews in Environmental Science & Bio/technology, 2016, 15(2):243-264.
[27] MENDEZ L, MAHDY A, TIMMERS R A, et al. Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments[J]. Bioresource Technology, 2013, 149(4):136-141.
[28] GRAHAM L E, WILCOX L W. Algae[M]. Upper Saddle River, NJ:Prentice-Hall, 2000:10.
[29] GOLUEKE C G, OSWALD W J, GOTAAS H B. Anaerobic digestion of algae[J]. Applied Microbiology, 1957, 5(1):47.
[30] SÁNCHEZ HERNÁNDEZ E P, CÓRDOBA L T. Anaerobic digestion of Chlorella vulgaris for energy production[J]. Resources Conservation & Recycling, 1993, 9(1/2):127-132.
[31] RAS M, LARDON L, BRUNO S, et al. Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris[J]. Bioresource Technology, 2011, 102(1):200.
[32] MUSSGNUG J H, KLASSEN V, SCHLÜTER A, et al. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept[J]. Journal of Biotechnology, 2010, 150(1):51-56.
[33] MONTINGELLI M E, TEDESCO S, OLABI A G. Biogas production from algal biomass:a review[J]. Renewable & Sustainable Energy Reviews, 2015, 43:961-972.
[34] ZHONG W, CHI L, LUO Y, et al. Enhanced methane production from Taihu Lake blue algae by anaerobic co-digestion with corn straw in continuous feed digesters[J]. Bioresource Technology, 2013, 134(2):264.
[35] KINNUNEN H V, KOSKINEN P E, RINTALA J. Mesophilic and thermophilic anaerobic laboratory-scale digestion of Nannochloropsis microalga residues[J]. Bioresource Technology, 2014, 155(2):314-322.
[36] HERRMANN C, KALITA N, WALL D, et al. Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates[J]. Bioresource Technology, 2016, 214:328-337.
[37] PASSOS F, GARCÍA J, FERRER I. Impact of low temperature pretreatment on the anaerobic digestion of microalgal biomass[J]. Bioresource Technology, 2013, 138(2):79-86.
[38] BOHUTSKYI P, BETENBAUGH M J, BOUWER E J. The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains[J]. Bioresource Technology, 2014, 155(10):366.
[39] XUE B, LANT P A, JENSEN P D, et al. Enhanced methane production from algal digestion using free nitrous acid pre-treatment[J]. Renewable Energy, 2016, 88:383-390.
[40] PRAJAPATI S K, MALIK A, VIJAY V K, et al. Enhanced methane production from algal biomass through short duration enzymatic pretreatment and codigestion with carbon rich waste[J]. RSC Advances, 2015, 5(82):67175-67183.
[41] MAHDY A, MENDEZ L, BALLESTEROS M, et al. Enhanced methane production of Chlorella vulgaris, and Chlamydomonas reinhardtii by hydrolytic enzymes addition[J]. Energy Conversion & Management, 2014, 85(85):551-557.
[42] CARRÈRE H, DUMAS C, BATTIMELLI A, et al. Pretreatment methods to improve sludge anaerobic degradability:a review[J]. Journal of Hazardous Materials, 2010, 183(1-3):1-15.
[43] ALZATE M E, MUÑOZ R, ROGALLA F, et al. Biochemical methane potential of microalgae:influence of substrate to inoculum ratio, biomass concentration and pretreatment[J]. Bioresource Technology, 2012, 123(123):488.
[44] LIU C Z, WANG F, STILES A R, et al. Ionic liquids for biofuel production:opportunities and challenges[J]. Applied Energy, 2012, 92(4):406-414.
[45] ZHOU N, ZHANG Y M, GONG X W, et al. Ionic liquids-based hydrolysis of Chlorella biomass for fermentable sugars[J]. Bioresource Technology, 2012, 118(8):512-517.
[46] JANKOWSKA E, SAHU A K, OLESKOWICZ-POPIEL P. Biogas from microalgae:review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion[J]. Renewable & Sustainable Energy Reviews, 2016, 75:692-709.
[47] RODRIGUEZ C, ALASWAD A, MOONEY J, et al. Pre-treatment techniques used for anaerobic digestion of algae[J]. Fuel Processing Technology, 2015, 138:765-779.
[48] MARKOU G, ANGELIDAKI I, GEORGAKAKIS D. Carbohydrate- enriched cyanobacterial biomass as feedstock for bio-methane production through anaerobic digestion[J]. Fuel, 2013, 111(9):872-879.
[49] KLASSEN V, BLIFERNEZKLASSEN O, HOEKZEMA Y, et al. A novel one-stage cultivation/fermentation strategy for improved biogas production with microalgal biomass[J]. Journal of Biotechnology, 2015, 215:44-51.
[50] FERNÁNDEZ-RODRÍGUEZ M J, RINCÓN B, FERMOSO F G, et al. Assessment of two-phase olive mill solid waste and microalgae co-digestion to improve methane production and process kinetics[J]. Bioresource Technology, 2014, 157(4):263-269.
[51] YEN H-W, BRUNE D. Anaerobic co-digestion of algal sludge and waste paper to produce methane[J]. Bioresource Technology, 2007, 98(1):130-134.
[52] ZHEN G, LU X, KOBAYASHI T, et al. Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp. Chlorella sp.) and food waste:kinetic modeling and synergistic impact evaluation[J]. Chemical Engineering Journal, 2016, 299:332-341.
[53] SOLÉ-BUNDÓ M, ESKICIOGLU C, GARFÍ M, et al. Anaerobic co-digestion of microalgal biomass and wheat straw with and without thermo-alkaline pretreatment[J]. Bioresource Technology, 2017, 237:89-98.
[54] WANG M, SAHU A K, RUSTEN B, et al. Anaerobic co-digestion of microalgae Chlorella sp. and waste activated sludge[J]. Bioresource Technology, 2013, 142(8):585.
[55] WANG M, PARK C. Investigation of anaerobic digestion of Chlorella, sp. and Micractinium, sp. grown in high-nitrogen wastewater and their co-digestion with waste activated sludge[J]. Biomass & Bioenergy, 2015, 80:30-37.
[56] CAPORGNO M P, TROBAJO R, CAIOLA N, et al. Biogas production from sewage sludge and microalgae co-digestion under mesophilic and thermophilic conditions[J]. Renewable Energy, 2015, 75:374-380.
[57] MAHDY A, MENDEZ L, BALLESTEROS M, et al. Algaculture integration in conventional wastewater treatment plants:anaerobic digestion comparison of primary and secondary sludge with microalgae biomass[J]. Bioresource Technology, 2015, 184:236-244. |