[1] SLOAN E D. Natural gas hydrates in flow assurance[M]. New York:Elsevier Science Ltd., 2010:1-36.
[2] SONG G C, LI Y X, WANG W C, et al. Experimental study of hydrate dissociation in oil-dominated systems using a high-pressure visual cell[J]. Journal of Natural Gas Science and Engineering, 2017, 45:26-37.
[3] JOSHI S V. Experimental investigation and modeling of gas hydrate formation in high water cut producing oil pipelines[D]. Golden:Colorado School of Mines, 2012.
[4] 宋光春, 李玉星, 王武昌. 油气输送管线水合物沉积研究进展[J]. 化工进展, 2017, 36(9):3164-3176. SONG G C, LI Y X, WANG W C. A review on hydrate deposition in oil and gas transmission pipelines[J]. Chemical Industry and Engineering Progress, 2017, 36(9):3164-3176.
[5] SONG G C, LI Y X, WANG W C, et al. Investigation of hydrate plugging in natural gas+diesel oil+water systems using a high-pressure flow loop[J]. Chemical Engineering Science, 2017, 158:480-489.
[6] GRASSO G A. Investigation of hydrate formation and transportability in multiphase flow systems[D]. Golden:Colorado School of Mines, 2015.
[7] GRASSO G A, SLOAN E D, KOH C, et al. Hydrate deposition mechanisms on pipe walls[C]//Texas, USA:Offshore Technology Conference, OTC-25309-MS, 2014.
[8] AMAN Z M, LORENZO M D, KOZIELSKI K, et al. Hydrate formation and deposition in a gas-dominant flowloop:Initial studies of the effect of velocity and sub-cooling[J]. Journal of Natural Gas Science & Engineering, 2016, 35:1490-1498.
[9] RAO I, KOH C A, SLOAN E D, et al. Gas hydrate deposition on a cold surface in water-saturated gas systems[J]. Industrial & Engineering Chemistry Research, 2013, 52(18):6262-6269.
[10] CHEN L T, KOH C A. Measurements of methane hydrate slurry viscosity and accumulation/sloughing in a high pressure water tunnel[C]//Denver, Colorado, USA:Proceedings of the 9th International Conference on Gas Hydrates, 2017.
[11] LIU Z J, ZERPA L E. A theoretical model to estimate the mechanical properties of gas hydrate deposits on pipewall and its implication for deposition sloughing[C]//Denver, Colorado, USA:Proceedings of the 9th International Conference on Gas Hydrates, 2017.
[12] LIU Z J. Study of hydrate deposition and sloughing of gas-dominated pipelines numerical and analytical models[D]. Golden:Colorado School of Mines, 2017.
[13] 曾凡, 胡永平. 矿物加工颗粒学[M]. 徐州:中国矿业大学出版社, 2001:75-77. ZENG F, HU Y P. Particle technology of mineral processing[M]. Xuzhou:China University of Mining & Technology Press, 2001:75-77.
[14] SMITH W O. Minimum capillary rise in an ideal uniform oil[J]. Physics, 1993, 4(5):184-193.
[15] RIDGWAY K, TARBUCK K J. Random packing of spheres[J]. Journal of the Society of Materials Science Japan, 1967, 17:454-458.
[16] WYLLIE M R J, GREGORY A R, GARDNER L W. Elastic wave velocities in heterogeneous and porous media[J]. Geophysics, 1956, 21(1):41-70.
[17] CASTAGNA J P, BATZLE M L, EASTWOOD R L. Relationship between compressional and shear-wave velocities in classic silicate rocks[J]. Geophysics, 1985, 50(4):571-581.
[18] HELGERUD M B, WAITE W F, KIRBY S H, et al. Elastic wave speeds and moduli in polycrystalline ice Ih, sⅠ methane hydrate, and sⅡ methane-ethane hydrate[J]. Journal of Geophysical Research Atmospheres, 2009, 114(B2):294-386.
[19] MAVKO G, MUKERJI T, DVORKIN J. The rock physics handbook:tools for seismic analysis in porous media[M]. Cambridge:Cambridge University Press, 1998:329.
[20] 何仲太, 马保起, 卢海峰. 衡水市岩土体剪切波速与土层深度的关系[J]. 科学技术与工程, 2014, 14(35):90-96. HE Z T, MA B Q, LU H F. Empirical relationship between shear wave velocity and depth of soils in urban area of Hengshui city[J]. Science Technology and Engineering, 2014, 14(35):90-96.
[21] AMAN Z M, LEITH W J, GRASSO G A, et al. Adhesion force between cyclopentane hydrate and mineral surfaces[J]. Langmuir, 2013, 29(50):15551-15557.
[22] DIEKER L E, AMAN Z A, GEORGE N C, et al. Micromechanical adhesion force measurements between hydrate particles in hydrocarbon oils and their modifications[J]. Energy & Fuels, 2009, 23(12):5966-5971.
[23] HU S, KIM T H, PARK J G, et al. Effect of different deposition mediums on the adhesion and removal of particles[J]. Journal of the Electrochemical Society, 2010, 157(6):243-253.
[24] BALAKIN B V, PEDERSEN H, KILINC Z, et al. Turbulent flow of freon R11 hydrate slurry[J]. Journal of Petroleum Science & Engineering, 2010, 70(3/4):177-182.
[25] 吕晓方, 胡善炜, 于达, 等. 基于在线颗粒分析仪的水合物生成特性实验研究[J]. 实验技术与管理, 2014, 31(11):84-88. LÜ X F, HU S W, YU D, et al. Experimental study of hydration characteristics based on FBRM[J]. Experimental Technology and Management, 2014, 31(11):84-88.
[26] AA-MAJID A, LEE W, SRIVASTAVA V, et al. The study of gas hydrate formation and particle transportability using a high pressure flowloop[C]//Texas, USA:Offshore Mediterranean Conference and Exhibition, 2016.
[27] AMAN Z M, BROWN E P, SLOAN E D, et al. Interfacial mechanisms governing cyclopentane clathrate hydrate adhesion/cohesion[J]. Physical Chemistry Chemical Physics, 2011, 13(44):19796-19806.
[28] HOEK E, CARRANZA-TORRES C T, CORKUM B, et al. Hoek-brown failure criterion-2002 edition[C]//Toronto, Canada:Proceedings of NARMS-Tac Conference, 2002.
[29] 李洋辉. 天然气水合物沉积物强度及变形特性研究[D]. 大连:大连理工大学, 2013. LI Y H. Study on strength and deformation behaviors of methane hydrate-bearing sediments[D]. Dalian:Dalian University of Technology, 2013.
[30] 施士昇. 混凝土的抗剪强度、剪切模量和弹性模量[J]. 土木工程学报, 1999, 32(2):47-52. SHI S S. Shear strength, modulus of rigidity and Yong's modulus of concrete[J]. China Civil Engineering Journal, 1999, 32(2):47-52.
[31] AMAN Z A, BROWN E P, SLOAN E D, et al. Interfacial mechanisms governing cyclopentane clathrate hydrate adhesion/cohesion[J]. Physical Chemistry Chemical Physics, 2011, 13(44):19796-19806.
[32] 赵鹏飞, 王武昌, 李玉星. 流动体系下油基天然气水合物颗粒管壁粘附机制研究[J]. 油气储运, 2016, 35(5):482-487. ZHAO P F, WANG W C, LI Y X. Pipe wall adhesion mechanism of natural gas hydrate particles in oil-dominated flowlines[J]. Oil & Gas Storage and Transportation, 2016, 35(5):482-487.
[33] LIU C W, LI Y X, WANG W Y. Modeling the micromechanical interactions between clathrate hydrate particles and water droplets with reducing liquid volume[J]. Chemical Engineering Science, 2017, 163:44-55. |