化工进展 ›› 2018, Vol. 37 ›› Issue (03): 1118-1129.DOI: 10.16085/j.issn.1000-6613.2017-0554
刘南1,2, 祁峰1, 李力1, 赵雪冰2, 刘德华2, 黄建忠1
收稿日期:
2017-03-30
修回日期:
2017-11-08
出版日期:
2018-03-05
发布日期:
2018-03-05
通讯作者:
赵雪冰,博士,研究员,博士生导师,研究方向为生物质化学工程;黄建忠,教授,博士生导师,研究方向为生物能源与微生物代谢工程
作者简介:
刘南(1993-),女,硕士研究生,研究方向为生物催化工程;祁峰(1981-),男,副教授,研究方向为生物能源。E-mail:f.qi@fjnu.edu.cn。
基金资助:
LIU Nan1,2, QI Feng1, LI Li1, ZHAO Xuebing2, LIU Dehua2, HUANG Jianzhong1
Received:
2017-03-30
Revised:
2017-11-08
Online:
2018-03-05
Published:
2018-03-05
摘要: 化石燃料的日渐枯竭及环境污染的日益严重使得生物质原料的资源化、能源化利用受到广泛关注。木质纤维素是地球上最丰富的可再生生物质,其通过生物转化可获得多种燃料和化学品,而纤维素难以有效糖化是木质纤维素生物转化的主要瓶颈。本文介绍了某些纤维素非降解性辅助蛋白提高纤维素酶解效率的相关研究进展,重点分析了近些年发现并研究较多的裂解性多糖单加氧酶(AA9和CBM33)、纤维二糖脱氢酶(CDH)、扩展蛋白(expansin)、膨胀素(SWOI)等几种纤维素辅助蛋白及其协助纤维素降解的机理,总结出这些辅助蛋白主要是通过促进木质素或半纤维素降解以及破坏纤维素的氢键网络和结构来协同纤维素酶催化纤维素的糖化降解。通过以上概括和评述,认为这些辅助蛋白虽然一定程度上可以促进纤维素的酶解,但其研究和应用还仅限于实验室基础研究,如何将其有效并廉价应用于木质纤维素生物转化的工业过程还面临着巨大挑战。指出相关研究工作的重点还需要从廉价而有效的蛋白筛选与构建、协同作用机理解析、过程优化与强化等方面深入开展。
中图分类号:
刘南, 祁峰, 李力, 赵雪冰, 刘德华, 黄建忠. 纤维素降解辅助蛋白及其作用机理研究进展[J]. 化工进展, 2018, 37(03): 1118-1129.
LIU Nan, QI Feng, LI Li, ZHAO Xuebing, LIU Dehua, HUANG Jianzhong. Auxiliary proteins for boosting enzymatic hydrolysis of cellulose and the action mechanisms[J]. Chemical Industry and Engineering Progress, 2018, 37(03): 1118-1129.
[1] 曲音波. 纤维素乙醇产业化[J]. 化学进展,2007,19(7/8):1098-1108. QU Y B. Industrialization of cellulosic ethanol[J]. Progress in Chemistry,2007,19(7/8):1098-1108. [2] HENDRIKS A T W M,ZEEMAN G. Pretreatments to enhance the digestibility of lignocellulosicbiomass[J]. Bioresource Technology,2009,100:10-18. [3] ERIKSSON K E L,BERMEK H. Lignin,lignocellulose,ligninase[J]. Applied Microbiology:Industrial,2009:373-384. https://doi.org/10.1016/B978-012373944-5.00152-8 [4] 谌恩华,吴华伟,李相前. 结晶纤维素的降解[J]. 草业科学,2016,33(11):2367-2374. SHEN E H,WU H W,LI X Q. Advance in research on degradation of crystalline cellulose[J]. Pratacultural Science,2016,33(11):2367-2374. [5] 方诩,秦玉琪,李雪芝,等. 纤维素酶与木质纤维素生物降解转化的研究进展[J]. 生物工程学报,2010,26(7):864-869. FANG X,QIN Y Q,LI X Z,et al. Advances in biodegradation of cellulase and lignocellulose[J]. Chinese Journal of Biotechnology,2010,26(7):864-869. [6] 周妍,赵雪冰,刘德华. 非离子型表面活性剂对木质纤维素酶催化水解的影响及机理[J]. 化学进展,2015,27(11):1555-1565. ZHOU Y,ZHAO X B,LIU D H. Mechanism of nonionic surfactant effect in enzymatic hydrolysis of lignocellulose[J]. Progress in Chemistry,2015,27(11):1555-1565. [7] AKIMKULOVA A,ZHOU Y,ZHAO X,et al. Improving the enzymatic hydrolysis of dilute acid pretreated wheat straw by metal ion blocking of non-productive cellulase adsorption on lignin[J]. Bioresource Technology,2016,208:110-116. [8] 韩业君,陈洪章. 植物细胞壁蛋白与木质纤维素酶解[J]. 化学进展,2007,19(7/8):1153-1158. HAN Y J,CHEN H Z. Plant cell-wall protein and lignocellulose hydrolysis[J]. Progress in Chemistry,2007,19(7/8):1153-1158. [9] BEESON W T,PHILLIPS C M,CATE J H D,et al. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases[J]. Journal of the American Chemical Society,2012,134(2):890-892. [10] FANG J,LIU W,GAO P J. Cellobiose dehydrogenase inhibition of polymerization of phenolic compounds and enhancing lignin degradation by lignina[J]. Acta Biochimica et Biophysica Sinica (ABBS),1999,31(4):415-419. [11] 方靖,高培基. 纤维二糖脱氢酶在纤维素降解中的作用研究[J]. 微生物学通报,2000,27(1):15-18. FANG J,GAO P J. Study on the role of cellobiose dehydrogenase in cellulose degradation[J]. Microbiology China,2000,27(1):15-18. [12] LEE H J,LEE S,KO H,et al. An expansin-like protein from Hahella chejuensis binds cellulose and enhances cellulase activity[J]. Molecules and Cells,2010,29(4):379-385. [13] BALDRIAN P. Fungal laccases-occurrence and properties[J]. FEMS Microbiology Reviews,2006,30(2):215-242. [14] LEVASSEUR A,DRULA E,LOMBARD V,et al. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes[J]. Biotechnology Biofuels,2013,6(1):41. [15] LEVASSEUR A,SALOHEIMO M,NAVARRO D,et al. Exploring laccase-like multicopper oxidase genes from the ascomycete Trichoderma reesei:a functional,phylogenetic and evolutionary study[J]. BMC Biochemistry,2010,11:32. [16] HÖLKER U,DOHSE J,HÖFER M. Extracellular laccases in ascomycetes Trichoderma atroviride and Trichoderma harzianum[J]. Folia Microbiologica,2002,47(4):423-427. [17] QUINLAN R J,SWEENEYA M D,LEGGIOB L L,et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components[J]. Proceedings of the National Academy of Sciences,2011,108(37):15079-15084. [18] HERNÁNDEZ-ORTEGA A,FERREIRA P,MARTÍNEZ A T. Fungal aryl-alcohol oxidase:a peroxide-producing flavoenzyme involved in lignin degradation[J]. Appllied Microbiology and Biotechnology,2012,93:1395-1410. [19] DANIEL G,VOLC J,FILONOVA L,et al. Characteristics of gloeophyllum trabeum alcohol oxidase,an extracellular source of H2O2in brown rot decay of wood[J]. Appllied and Environmental Microbiology,2007,73:6241-6253. [20] GIFFHORN F. Fungal pyranose oxidases:occurrence,properties and biotechnical applications in carbohydrate chemistry[J]. Appllied Microbiology and Biotechnology,2000,54:727-740. [21] DE JONG E,VAN BERKEL W J,VANDER ZWAN R P,et al. Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum:a novel aromatic alcohol oxidase containing covalently bound FAD[J]. European Journal of Biochemistry,1992,208:651-657. [22] WHITTAKER M M,KERSTEN P J,NAKAMURA N,et al. Glyoxal oxidase from Phanerochaete chrysosporium is a new radical-copper oxidase[J]. The Journal of Biological Chemistry,1996,271:681-687. [23] LEE S S,MOON D S,CHOI H T,et al. Purification and characterization of an intracellular NADH:quinone reductase from Trametes versicolor[J]. Journal of Microbiology,2007,45(4):333-338. [24] JENSEN K J,RYAN Z,WYMELENBERG A,et al. An NADH:quinone xidoreductase active during biodegradation by the brown-rot basidiomycete Gloeophyllum trabeum[J]. Appllied and Environmental Microbiology,2002,68:2699-2703. [25] VAN HELLEMOND E W,LEFERINK N G H,HEUTS D P H M,et al. Occurrence and biocatalytic potential of carbohydrate oxidases[J]. Advances in Applied Microbiology,2006,60:17-54. [26] EASTWOOD D C,FLOUDAS D,BINDER M,et al. The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi[J]. Science,2011,333:762-765. [27] COUTURIER M,BENNATI-GRANIER C,URIO M B,et al. Fungal enzymatic degradation of cellulose[J]. Green Energy and Technology,2016:133-146. DOI:10.1007/978-3-319-30205-8. [28] VAAJE-KOLSTAD G,HORN S J,VAN AALTEN D M F,et al. The noncatalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation[J]. The Journal of Biological Chemistry,2005,280:28492-28497. [29] VAAJE-KOLSTAD G,WESTERENG B,HORN S J,et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides[J]. Science,2010,330:219-222. [30] FORSBERG Z,VAAJE-KOLSTAD G,WESTERENG B,et al. Cleavage of cellulose by a CBM33 protein[J]. Protein Sci.,2011,20:1479-1483. [31] 王璐. 木腐真菌分泌的低分子量物质在木素生物降解中的作用机制[D]. 济南:山东大学,2008. WANG L. Wide distribution and function of the low melcular weight substances by wood rot fugi in native lignocellulosic degradation[D]. Jinan:Shandong University,2008. [32] 王蔚,高培基. 密粘褶菌胞外低分子量多肽在纤维素降解中作用的研究[J]. 微生物学报,2002,42(2):220-225. WANG W,GAO P J. A possible role of a low-molecular-weight peptide from Gloeophyllum trabeum in cellulose degradation[J]. Microbiology China,2002,42(2):220-225. [33] 卢迪,陈洪章,马润宇. 秸秆质外体蛋白对纤维素酶活力的影响[J]. 生物工程学报,2006,22(2):257-262. LU D,CHEN H Z,MA R Y. Effect of straw apoplast protein on cellulase activity[J]. Chinese Journal of Biotechnology,2006,22(2):257-262. [34] MCQUEEN-MASON S,COSGROVE D J. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension[J]. Proceedings of the National Academy of Sciences,1994,91(14):6574-6578. [35] SAMPEDRO J,COSGROVE D J. The expansin superfamily[J]. Genome Biology,2005,6(12):242. [36] BIELY P,MASTIHUBOVA M,TENKANEN M,et al. Action of xylan deacetylating enzymes on monoacetyl derivatives of 4-nitrophenyl glycosides of β-D-xylopyranose and α-L-arabinofuranose[J]. Journal of Biotechnology,2011,151(1):137-142. [37] ZOU L,SUN T T,YANG Y Y,et al. Molecular characterization of a glycoside hydrolase family-51α-L-arabinofuranosidase from Auricularia auricular[J]. Biotechnology & Biotechnological Equipment,2017,31(3):469-476. [38] TERRASAN C R F,ROMERO-FERNÁNDEZ M,ORREGO A H,et al. Immobilization and stabilization of beta-xylosidases from Penicillium janczewskii[J]. Applied Biochemistry and Biotechnology,2017,182(1):349-366. [39] WOLF-MÁRQUEZ V E,AURORA MARTÍNEZ TRUJILLO,AGUILAR G,et al. Scaling-up and ionic liquid-based extraction of pectinases from Aspergillus flavipes cultures[J]. Bioresource Technology,2017,225:326-335. [40] HEMSWORTH G R,TAYLOR E J,KIM R Q,et al. The copper active site of CBM33 polysaccharide oxygenases[J]. Journal of the American Chemical Society,2013,135(16):6069-6077. [41] VU V,BEESON W T,SPAN E A,et al. A family of starch-active polysaccharide monooxygenases[J]. Proceedings of the National Academy of Sciences USA,2014,111(38):13822-13827. [42] ZIFCÁKOVÁ L,BALDRIAN P. Fungal polysaccharide monooxygenases:new players in the decomposition of cellulose[J]. Fungal Ecology,2012,5:481-489. [43] HARRIS P V,WELNER D,MC FARLAND K C,et al. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61:structure and function of a large,enigmatic family[J]. Biochemistry,2010,49(15):3305-3316. [44] HU J,ARANTES V,PRIBOWO A,et al. Substrate factors that influence the synergistic interaction of AA9 and cellulases during the enzymatic hydrolysis of biomass[J]. Energy & Environmental Science,2014,7:2308. [45] CHANDRA R P,BURA R,MABEE W E,et al. Substrate pretreatment:the key to effective enzymatic hydrolysis of lignocellulosics[M]//OLSSON L eds. Biofuels:advances in biochemical engineering/biotechnology. Berlin,Heidelberg:Springer,2007,108:67-93. [46] AACHMANN F L,SØRLIEB M,SKJÅK-BRÆKA G,et al. NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding,protein dynamics,and substrate interactions[J]. Proceedings of the National Academy of Sciences USA,2012,109(46):18779-18784. [47] LI X,BEESON IV W T,PHILLIPS C M,et al. Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases[J]. Structure,2012,20(6):1051-1061. [48] PHILLIPS C M,BEESON W T,CATE J H,et al. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa[J]. ACS Chemical Biology,2011,6(12):1399-1406. [49] VAAJE-KOLSTAD G,WESTERENG B,HORN S J,et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides[J]. Science,2010,330(6001):219-220. [50] LANGSTON J A,SHAGHASI T,ABBATE E,et al. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61[J]. Appllied Environmental Microbiology,2011,77(19):7007-7015. [51] HENRIKSSON G,JOHANSSON G,PETTERSSON G. A critical review of cellobiose dehydrogenases[J]. Journal of Biotechnology,2000,78(2):93-113. [52] HENRIKSSON G,JOHANSSON G,PETTERSSON G. Is cellobiose oxidase from Phanerochaete chrysosporium a one-electron reductase[J]. Biochimica et Biophysica Acta,1993,1144(2):184-190. [53] GHISLA S,MASSEY V. Mechanisms of flavoprotein-catalyzed reactions[J]. European Journal of Biochemistry,1989,181(1):1-17. [54] RAICES M,PAIFER E,CREMATA J,et al. Cloning and characterization of a cDNA encoding a cellobiose dehydrogenase from Phanerochaete chrysosporium[J]. FEBS Letters,1995,369(2/3):233-238. [55] HENRIKSSON G,POLK V,ERIKSSON K E L. Assay for cellobiose dehydrogenase in the presence of laccase[J]. Biotechnology Techniques,1997,11(10):743-745. [56] TAN T C,KRACHER D,GANDINI R,et al. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation[J]. Nature Communications,2015,6:7542. [57] JOHANSEN K S. Lytic polysaccharide monooxygenases:the microbial power tool for lignocellulose degradation[J]. Trends in Plant Science,2016,21(11):926-936. [58] WANG M,LU X. Exploring the synergy between cellobiose dehydrogenase from Phanerochaete chrysosporium and cellulase from Trichoderma reesei[J]. Frontiers in Microbiology,2016,7:620. [59] IGARASHI K,SAMEJIMA M,ERIKSSON K E L. Cellobiose dehydrogenase enhances Phanerochaete chrysosporium cellobiohydrolase I activity by relieving product inhibition[J]. European Journal of Biochemistry,1998,253(1):101-106. [60] BEY M,BERRIN J G,POIDEVIN L,et al. Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processes[J]. Microbial Cell Factories,2011,10:113. [61] EKWE E,MORGENSTERN I,TSANG A,et al. Non-hydrolytic cellulose active proteins:research progress and potential application in biorefineries[J]. Industrial Biotechnology,2013,9(3):123-131. [62] COSGROVE D J. Loosening of plant cell walls by expansins[J]. Nature,2000,407(6802):321-326. [63] COSGROVE D J,LI L C,CHO H T,et al. The growing world of expansins[J]. Plant and Cell Physiology,2002,43(12):1436-1444. [64] 周庆新. 木霉纤维素膨胀因子Swollenin与β-葡萄糖苷酶的功能研究[D]. 济南:山东大学,2011. ZHOU Q X. Evaluation of swollenin from Trichoderma pseudokoningii as a potential synergistic factor in the enzymatic hydrolysis of cellulose with low cellulase loadings[D]. Jinan:Shandong University,2011. [65] KIM E S,LEE H J,BANG W G,et al. Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose[J]. Biotechnology and Bioengineering,2009,102(5):1342-1353. [66] GEORGELIS N,NIKOLAIDIS N,COSGROVE D J. Biochemical analysis of expansin-like proteins from microbes[J]. Carbohydrate Polymers,2014,100:17-23. [67] LIN H,SHEN Q,ZHAN J M,et al. Evaluation of bacterial expansin EXLX1 as a cellulase synergist for the saccharification of lignocellulosic Agro-industrial wastes[J]. PloS One,2013,8(9):e075022. [68] TABUCHI A,LI L C,COSGROVE D J. Matrix solubilization and cell wall weakening by beta-expansin(group-1 allergen) from maize pollen[J]. The Plant Journal,2011,68(3):546-559. [69] CHEN X A,ISHIDA N,TODAKA N,et al. Promotion of efficient Saccharification of crystalline cellulose by Aspergillus fumigatus Swo1[J]. Appllied Environmental Microbiol,2010,76(8):2556-2561. [70] LAINE M J,HAAPALAINEN M,WAHLROOS T,et al. The cellulase encoded by the native plasmid of Clavibacter michiganensis ssp. sepedonicus plays a role in virulence and contains an expansin-like domain[J]. Physiological & Molecular Plant Pathology,2000,57(5):221-233. [71] SALOHEIMO M,PALOHEIMO M,HAKOLA S,et al. Swollenin,a Trichoderma reesei protein with sequence similarity to the plant expansins,exhibits disruption activity on cellulosic materials[J]. European Journal of Biochemistry,2002,269(17):4202-4211. [72] FOREMAN P K,BROWN D,DANKMEYER L,et al. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei[J]. The Journal of Chimstry,2003,278:31988-31997. [73] BROTMAN Y,BRIFF E,VITERBO A,et al. Role of swollenin,an expansin-like protein from Trichoderma,in plant root colonization[J]. Plant Physiology,2008,147(2):779-789. [74] KANG K,WANG S,LAI G,et al. Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose[J]. BMC Biotechnology,2013,13(1):42. [75] JÄGER G,GIRFOGLIO M,DOLLO F,et al. How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis[J]. Biotechnology Biofuels,2011,4(1):33. [76] ANDBERG M,PENTTILA M,SALOHEIMO M. Swollenin from Trichoderma reesei exhibits hydrolytic activity against cellulosic substrates with features of both endoglucanases and cellobiohydrolases[J]. Bioresource Technology,2015,181:105-113. [77] HU J,PRIBOWO A,SADDLER J N. Oxidative cleavage of some cellulosic substrates by auxiliary activity(AA)family 9 enzymes influences the adsorption/desorption of hydrolytic cellulase enzymes[J]. Green Chemistry,2016,18(23):6329-6336. [78] KIM I J,SEO N,AN H J,et al. Type-dependent action modes of TtAA9E and TaAA9A acting on cellulose and differently pretreated lignocellulosic substrates[J]. Biotechnology and Biofuels,2017,10(1):46. [79] SCOTT B R,HUANG H Z,FRICKMAN J,et al. Catalase improves saccharification of lignocellulose by reducing lytic polysaccharide monooxygenase-associated enzyme inactivation[J]. Biotechnology Letters,2016,38(3):425-434. [80] DIMAROGONA M,TOPAKAS E,OLSSON L,et al. Lignin boosts the cellulase performance of a GH-61 enzyme from Sporotrichum thermophile[J]. Bioresource Technology,2012,110:480-487. [81] VAAJE-KOLSTAD G,BØHLE L A,GÅSEIDNES S,et al. Characterization of the chitinolytic machinery of Enterococcus faecalis V583 and high-resolution structure of its oxidative CBM33 enzyme[J]. Journal of Molecular Biology,2012,416(2):239-254. [82] LOOSE J S,FORSBERG Z,KRACHER D,et al. Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase[J]. Protein Science,2016,25(12):2175-2186. [83] MOSER F,IRWIN D,CHEN S,et al. Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8[J]. Biotechnology & Bioengineering,2008,100(6):1066-1077. [84] SUWANNARANGSEE S,BUNTERNGSOOK B,ARNTHONG J,et al. Optimisation of synergistic biomass-degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design[J]. Bioresource Technology,2012,119:252-261. [85] ARTZI L,MORAG E,SHAMSHOUM M,et al. Cellulosomal expansin:functionality and incorporation into the complex[J]. Biotechnology for Biofuels,2016,9:61. [86] KUMAR M,SINGH P,SUKLA L B. Addition of expansin to cellulase enhanced bioethanol production[J]. Process Biochemistry,2016,51(12):2097-2103. [87] ZHANG Y. Recombinant EXLX1 from Bacillus subtilis for enhancing enzymatic hydrolysis of corn stover with low cellulase loadings[J]. African Journal of Biotechnology,2012,11(50):11126-11131. [88] WANG Y,TANG R,TAO J,et al. Quantitative investigation of non-hydrolytic disruptive activity on crystalline cellulose and application to recombinant swollenin[J]. Applied Microbiology and Biotechnology,2011,91(5):1353. [89] GOURLAY K,HU J,ARANTES V,et al. Swollenin aids in the amorphogenesis step during the enzymatic hydrolysis of pretreated biomass[J]. Bioresource Technology,2013,142:498-503. [90] GOURLAY K,ARANTES V,SADDLER J N. Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis[J]. Biotechnology for Biofuels,2012,5(1):51. [91] KIM I J,LEE H J,CHOI I G,et al. Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulose[J]. Appllied Microbiology Biotechnology,2014,98(20):8469-8480. [92] MÜLLER G,VÁRNAI A,JOHANSEN K S,et al. Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions[J]. Biotechnology for Biofuels,2015,8(1):187. [93] JOHANSEN K S. Discovery and industrial applications of lytic polysaccharide mono-oxygenases[J]. Biochemical Society Transactions,2016,44(1):143-149. [94] SCOTT B R,HUANG H Z,FRICKMAN J,et al. Catalase improves saccharification of lignocellulose by reducing LPMO-associated enzyme inactivation[J]. Biotechnology Letters,2016,38(3):425-434. |
[1] | 席慧敏, 钱坤, 俞科静, 李杰, 张中威, 熊自明, 张耀良. 基于二硫键和氢键的自修复聚氨酯弹性体的制备、改性及其应用[J]. 化工进展, 2023, 42(2): 934-943. |
[2] | 叶玉玺, 丁晓茜, 池华睿, 朱楷伦, 刘杨, 王凌云, 郭庆杰. 疏水性低共熔溶剂氢键交互作用调控及萃取铜性能[J]. 化工进展, 2022, 41(S1): 397-406. |
[3] | 孙国旗, 王维, 宋兵, 王亮, 邵瑞琪, 徐志伟, 罗仕刚, 闫民杰, 王立晶, 钱晓明. 聚乙烯醇热塑改性研究进展[J]. 化工进展, 2022, 41(S1): 293-306. |
[4] | 董艳梅, 安艳霞, 马阳阳, 张剑, 李梦琴. 深度共熔溶剂预处理木质纤维素生物质研究进展[J]. 化工进展, 2021, 40(3): 1594-1603. |
[5] | 王玉龙, 胡国胜, 张静婷, 白静静, 吕秦牛, 李振中. 基于双硫键和氢键协效的高性能自修复聚氨酯脲的研制[J]. 化工进展, 2021, 40(1): 324-331. |
[6] | 易兰, 李文英, 冯杰. 离子液体/低共熔溶剂在煤基液体分离中的应用[J]. 化工进展, 2020, 39(6): 2066-2078. |
[7] | 裴强,丁爱祥,杨明丽,徐果,徐文豪. 氢键型超分子聚合物[J]. 化工进展, 2020, 39(1): 233-249. |
[8] | 岳军, 徐友海, 王继艳, 胡世洋, 惠继星, 金刚. 木薯酒精渣的预处理及补料同步糖化发酵制取乙醇[J]. 化工进展, 2018, 37(01): 276-282. |
[9] | 代军, 晏华, 王雪梅, 郭骏骏, 胡志德, 杨健健. 基于AHP-DEA的聚乙烯热氧老化影响因素灰色关联分析[J]. 化工进展, 2017, 36(04): 1358-1365. |
[10] | 代军, 晏华, 王雪梅, 郭骏骏, 桑练勇. 结晶度对高密度聚乙烯光氧老化特性的影响[J]. 化工进展, 2017, 36(03): 1003-1011. |
[11] | 高月淑, 许敬亮, 袁振宏, 张宁, 蒋剑春. 半纤维素酶添加对碱处理甘蔗渣结构及酶解的影响[J]. 化工进展, 2016, 35(S1): 270-275. |
[12] | 沙如意, Edwin Menledy Gbor JR, 楼坚, 蔡成岗, 毛建卫, 刘士旺. 粗纤维素酶液对微晶纤维素酶解的影响因素[J]. 化工进展, 2016, 35(09): 2766-2774. |
[13] | 项婧娈, 沈春晖, 孔更金. 固体核磁共振在膦酸基质子交换膜中的应用[J]. 化工进展, 2015, 34(09): 3356-3362. |
[14] | 刘 钺,张宏武,陈 波,康新凯,杜风光. 纤维素水解液中木糖发酵制丁醇[J]. 化工进展, 2013, 32(11): 2701-2706. |
[15] | 李琼翠1,2,段晓健1,2,张长波1,居学海1,王景安2,刘仲齐1. [J]. 化工进展, 2013, 32(09): 2200-2204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |