[1] 马玺,刘义佳,关松,等. 汽油发动机不同燃油喷射方式下缸内燃烧情况的试验研究[J]. 小型内燃机与摩托车,2015,44(4):36-39. MA X,LIU Y J,GUAN S,et al. Experimental study on combustion in cylinder about gasoline engine under different fuel injection modes[J]. Small Internal Combustion Engine and Motorcycle,2015,44(4):36-39.
[2] 张孟昀,赵增武,张亚竹,等. 不同射流方式对钢板换热的影响研究[J]. 内蒙古科技大学学报,2013,32(3):221-224. ZHANG M Y,ZHAO Z W,ZHANG Y Z,et al. Study on the heat transfer of cooling plate with different ways of spray[J]. Journal of Inner Mongolia University of Science and Technology,2013,32(3):221-224.
[3] LI X,ZHANG L,MA X,et al. Dynamic characteristics of droplet impacting on prepared hydrophobic/superhydrophobic silicon surfaces[J]. Surface & Coatings Technology,2016,307:243-253.
[4] LIANG G,MUDAWAR I. Review of drop impact on heated walls[J]. International Journal of Heat and Mass Transfer,2017,106:103-126.
[5] KHOJASTEH D,KAZEROONI N M,SALARIAN S,et al. Droplet impact on superhydrophobic surfaces:a review of recent developments[J]. Journal of Industrial & Engineering Chemistry,2016,42:1-14.
[6] OKUMURA K,CHEVY F,CLANET C,et al. Water spring:a model for bouncing drops[J]. EPL(Europhysics Letters),2003,62(2):237-243.
[7] 施其明,贾志海,林琪焱. 液滴撞击微结构疏水表面的动态特性[J]. 化工进展,2016,35(12):3818-3824. SHI Q M,JIA Z H,LIN Q Y. Dynamic behavior of droplets impacting on microstructured hydrophobic surfaces[J]. Chemical Industry and Engineering Progress,2016,35(12):3818-3824.
[8] RAMACHANDRAN R,SOBOLEV K,NOSONOVSKY M. Dynamics of droplet impact on hydrophobic/icephobic concrete with the potential for superhydrophobicity[J]. Langmuir,2015,31(4):1437-1444.
[9] CHEN L,BONACCURSO E,SHANAHAN M E. Inertial to viscoelastic transition in early drop spreading on soft surfaces[J]. Langmuir,2013,29(6):1893-1898.
[10] ALIZADEH A,BAHADUR V,ZHONG S,et al. Temperature dependent droplet impact dynamics on flat and textured surfaces[J]. Applied Physics Letters,2012,100(11):111601.
[11] 王宏,廖强,朱恂. 梯度表面能材料上液滴运动机理[J]. 化工学报,2007,58(9):2313-2320. WANG H,LIAO Q,ZHU X. Mechanism of liquid droplet movement on surface with gradient surface energy[J]. CIESC Journal,2007,58(9):2313-2320.
[12] 黄志,王琳玮,刘抗,等. 润湿性梯度表面凝结水量研究[J]. 工程热物理学报,2011,32(11):1937-1940. HUANG Z,WANG L W,LIU K,et al. Moisture condensation on surface with wettability gradients[J]. Journal of Engineering Thermophysics,2011,32(11):1937-1940.
[13] MALOUIN B A,KORATKAR N A,HIRSA A H,et al. Directed rebounding of droplets by microscale surface roughness gradients[J]. Applied Physics Letters,2010,96(23):261.
[14] WU J,MA R,WANG Z,et al. Do droplets always move following the wettability gradient?[J]. Applied Physics Letters,2011,98(20):204104.
[15] LIU Y,WHYMAN G,BORMASHENKO E,et al. Controlling drop bouncing using surfaces with gradient features[J]. Applied Physics Letters,2015,107(5):051604.
[16] LINKE H,ALEMAN B J,MELLING L D,et al. Self-propelled Leidenfrost droplets[J]. Physical Review Letters,2006,96(15):154502.
[17] DUPEUX G,BAIER T,BACOT V,et al. Self-propelling uneven Leidenfrost solids[J]. Physics of Fluids,2013,25(5):051704.
[18] JIA Z H,CHEN M Y,ZHU H T. Reversible self-propelled Leidenfrost droplets on ratchet surfaces[J]. Applied Physics Letters,2017,110(9):091603.
[19] LI J,HOU Y,LIU Y,et al. Directional transport of high-temperature Janus droplets mediated by structural topography[J]. Nature Physics,2016,12(6):606-612. |