[1] 韩中合,王营营,王继选,等.碳捕集系统与燃煤机组热力系统耦合的热经济性分析[J].化工进展,2014,33(6):1616-1623.
[2] JASSIM M S,ROCHELLE G T. Innovative absorber/stripper configurations for CO2 capture by aqueous monoethanolamine[J].Ind. Eng. Chem. Res.,2006,45:2465-2472.
[3] DOE/NETL. Research and development goals for CO2 capture technology[EB/OL].2011[2017-02-15].http:www.netl.doe.gov.
[4] Global CCS institute. The global status of CCS:2016summary report[EB/OL].2016[2017-02-15].http:www.status.globalccsinstitute.com.
[5] HUANG B,XU S S,GAO S W,et al. Industrial test and techno-economic analysis of CO2 capture in Huaneng Beijing coal-fired power station[J].Appl. Energy,2010,87:3347-3354.
[6] 李学平,卢志刚,王浩锐,等.考虑碳减排日指标约束的碳捕集调度策略[J].中国电机工程学报,2012,32(31):159-165.
[7] 中国国家发展和改革委员会.中国碳捕集与封存示范和推广路线图[EB/OL].2015[2017-02-15].www.cn.globalccsinstitute.com.
[8] ZHAO R K,DENG S,LIU Y N,et al. Carbon pump:fundamental theory and applications[J].Energy,2017,119:131-1143.
[9] WILCOX J. Carbon capture[M].USA:Springer,2012.
[10] 高林.煤基化工-动力多联产系统开拓研究[D].北京:中国科学院工程热物理研究所,2005.
[11] HOUSE K Z,HARVEY C F,AZIZ M J,et al. The energy penalty of post-combustion CO2 capture & storage and its implications for retrofitting the U. S. installed base[J].Energy Environ. Sci.,2009,2:193-205.
[12] MOULLEC Y L. Assessment of carbon capture thermodynamic limitation on coal-fired power plant efficiency[J].Int. J. Greenhouse Gas Control,2012,7:192-201.
[13] LI S,JIN H,GAO L,et al. Energy and exergy analysis of an integrated gasification combined cycle power plant with CO2 capture using hot potassium carbonate solvent[J].Environ. Sci. Technol.,2014,48:14814-14821.
[14] ZHANG Y Y,JI X Y,LU X H. Energy consumption analysis for CO2separation from gas mixtures[J].Appl. Energy,2014,130:237-243.
[15] HOUSE K Z,BACLIG A C,RANJAN M,et al. Economic and energetic analysis of capturing CO2 from ambient air[J].PNAS,2011,108(51):20428-20433.
[16] OEXMANN J,KATHER A. Minimising the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption:the misguided focus on low heat of absorption solvents[J].Int. J. Greenhouse Gas Control,2010,4:26-43.
[17] GOTO K,YOGO K,HIGASHⅡ T. A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture[J].Appl. Energy,2013,111:710-720.
[18] KOTHANDARAMAN A,NORD L,BOLLAND O,et al. Comparison of solvents for post-combustion capture of CO2 by chemical absorption[J].Energy Procedia,2009,1:1373-1380.
[19] AROONWILAS A,VEAWAB A. Integration of CO2 capture unit using single-and blended-amines into supercritical coal-fired power plants:implications for emission and energy management[J].Int. J. Greenhouse Gas Control,2007,1:143-150.
[20] REMEO L M,ESPATOLERO S,BOLEA I. Designing a supercritical steam cycle to integrate the energy requirements of CO2 amine scrubbing[J].Int. J. Greenhouse Gas Control,2008,2:563-570.
[21] CIFRE P G,BRECHTEL K,HOCH S,et al. Integration of a chemical process model in a power plant modelling tool for the simulation of an amine based CO2 scrubber[J].Fuel,2009,88:2481-2488.
[22] SANPASERTPARNICH T,IDEM R,BOLEA I,et al. Integration of post-combustion capture and storage into a pulverized coal-fired power plant[J].Int. J. Greenhouse Gas Control,2010,4(3):499-510.
[23] BERSTAD D,ARASTO A,JORDAL K,et al. Parametric study and benchmarking of NGCC,coal and biomass power cycles integrated with MEA-based post-combustion CO2 capture[J].Energy Procedia,2011,4:1737-1744.
[24] LIANG H W,XU Z G,SI F Q. Economic analysis of amine based carbon dioxide capture system with bi-pressure stripper in supercritical coal-fired power plant[J].Int. J. Greenhouse Gas Control,2011,5:702-709.
[25] MOULLEC Y L. Assessment of carbon capture thermodynamic limitation on coal-fired power plant efficiency[J].Int. J. Greenhouse Gas Control,2012,7:192-201.
[26] CORMOS C,CORMOS A,AGACHI P S. Assessment of carbon capture options for super-critical coal-fired power plants[J].Chem. Eng. Trans.,2013,35:367-372.
[27] ZHAO M,MINETT A I,HARRIS A T. A review of techno-economic models for the retrofitting of conventional pulverized-coal power plants for post-combustion capture of CO2[J].Energy Environ. Sci.,2013,6:25-40.
[28] HANAK D P,BILIYOK C,YEUNG H,et al. Heat integration and exergy analysis for a supercritical high-ash coal-fired power plant integrated with a post-combustion carbon capture process[J].Fuel,2014,134:126-139.
[29] LIU X Y,CHEN J,LUO X B,et al. Study on heat integration of supercritical coal-fired power plant with post-combustion CO2 capture process through process simulation[J].Fuel,2015,158:625-633.
[30] LI K K,YU H,FERON P,et al. Technical and energy performance of an advanced,aqueous ammonia-based CO2 capture technology for a 500MW coal-fired power station[J].Environ. Sci. Technol.,2015,49:10243-10252.
[31] ZHAO B,LIU F Z,CUI Z,et al. Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650MW power plant:process improvement[J].Appl. Energy,2017,185:362-375.
[32] KUNZE C,RIEDL K,SPLIETHOFF H. Structured exergy analysis of an integrated gasification combined cycle plant with carbon capture[J].Energy,2011,36:1480-1487.
[33] MANSOURI M T,MOUSAVIAN S. Exergy-based analysis of conventional coal-fired power plant retrofitted with oxy-fuel and post-combustion CO2 capture systems[J].J. Power Energy,2012,226(8):989-1002.
[34] HAGI H,NEMER M,MOULLEC Y L,et al. Assessment of the flue gas recycle strategies on oxy-coal power plants using an exergy-based methodology[J].Chem. Eng. Trans.,2013,35:343-348.
[35] OLALEYE A K,WANG M L,KELSALL G. Steady state simulation and exergy analysis of supercritical coal-fired power plant with CO2 capture[J].Fuel,2015,151:57-72.
[36] 刘一楠,邓帅,赵睿恺,等.新型太阳能辅助碳捕集技术进展综述与性能比较[J].化工进展,2016,35(12):3848-3857.
[37] 李胜. CO2捕集能耗最小化机理及煤制天然气动力多联产系统[D].北京:中国科学院工程热物理研究所,2012.
[38] 金红光,张国强,高林,等.总能系统理论研究进展与展望[J].机械工程学报,2009,45(3):39-48.
[39] LIANG X Y,WANG Z H,ZHOU Z J,et al. Up-to-date life cycle assessment and comparison study of clean coal power generation technologies in China[J].J. Clean. Prod.,2013,39:24-31.
[40] PEHNT M,HENKEL J. Life cycle assessment of carbon dioxide capture and storage from lignite power plants[J].Int. J. Greenhouse Gas Control,2009,3(1):49-66.
[41] NEEDS. New energy externalities development for sustainability[R].2008[2017-02-15].http:www.dlr.de.
[42] ODEH N A,COCKERILL T T. Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage[J].Energy Policy,2008,36:367-380.
[43] NRREL/TP. Biomass power and conventional fossil systems with and without CO2 sequestration-comparing the energy balance,greenhouse gas emissions and economics[EB/OL].2004[2017-02-15].http:www.osti.gov/bridge.
[44] GLADYSZ P,ZIEBIK A. Life cycle assessment of an integrated oxy-fuel combustion power plant with CO2 capture,transport and storage-Poland case study[J].Energy,2015,92:328-340.
[45] 孙艳彬.机电产品全生命周期评价基础数据库设计[D].大连:大连理工大学,2013.
[46] ROEDER V,KATHER A. Part load behavior of power plants with a retrofitted post-combustion CO2 capture process[J].Energy Procedia,2014,51:207-216.
[47] NIMTZ M,KRAUTZ H. Flexible operation of CCS power plants to match variable renewable energies[J].Energy Procedia,2013,40:294-303.
[48] JIN B,ZHAO H B,ZHENG C G. Dynamic exergy method and its application for CO2 compression and purification unit in oxy-combustion power plants[J].Chem. Eng. Sci.,2016,144:336-345.
[49] KHALILPOUR R. Flexible operation scheduling of a power plant integrated with PCC process under Market Dynamics[J].Ind. Eng. Chem. Res.,2014,53:8132-8146. |