[1] BEAULIEU E,GODDERIS Y,DONNADIEU Y,et al. High sensitivity of the continental-weathering carbon dioxide sink to future climate change[J]. Nature Climate Change,2012,2(5):346-349.
[2] GALE J,ABANADES J C,BACHU S,et al. Special issue commemorating the 10th year anniversary of the publication of the Intergovernmental Panel on Climate Change Special Report on CO2 Capture and Storage[J]. International Journal of Greenhouse Gas Control,2015,40:1-5.
[3] 张登峰. 二氧化碳的电石渣捕集与深部煤层封存[D]. 北京:中国科学院研究生院,2011. ZHANG D F. Carbon dioxide capture by carbide slag and sequestration in deep coal seams[D]. Beijing:Graduate University,Chinese Academy of Sciences,2011.
[4] HASZELDINE R S. Carbon capture and storage: how green can black be?[J] Science,2009,325(5948):1647-1652.
[5] ORR F M J. Onshore geologic storage of CO2[J]. Science,2009,325(5948):1656-1658.
[6] WHITE C M,SMITH D H,JONES K L,et al. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery—a review[J]. Energy & Fuels,2005,19(3):659-724.
[7] DIXON T,HERZOG H,TWINNING S,et al. 12th International Conference on Greenhouse Gas Control Technologies,GHGT-12CO2- ECBM:a review of its status and global Potential[J]. Energy Procedia,2014,63:5858-5869.
[8] CLARKSON C R,BUSTIN R M. Binary gas adsorption/desorption isotherms:effect of moisture and coal composition upon carbon dioxide selectivity over methane[J]. International Journal of Coal Geology,2000,42(4):241-271.
[9] ZHANG D F,CUI Y J,LIU B,et al. Supercritical pure methane and CO2 adsorption on various rank coals of China: experiments and modeling[J]. Energy & Fuels,2011,25(4):1891-1899.
[10] ZHANG D F,LI S G,CUI Y J,et al. Displacement behavior of methane adsorbed on coal by CO2 injection[J]. Industrial & Engineering Chemistry Research,2011,50(14):8742-8749.
[11] WANG Q Q,LI W,ZHANG D F,et al. Influence of high-pressure CO2 exposure on adsorption kinetics of methane and CO2 on coals[J]. Journal of Natural Gas Science and Engineering,2016,34: 811-822.
[12] WANG Q Q,ZHANG D F,WANG H H,et al. Influence of CO2 exposure on high-pressure methane and CO2 adsorption on various rank coals:implications for CO2 sequestration in coal seams[J]. Energy & Fuels,2015,29(6):3785-3795.
[13] LI W,LIU H F,SONG X X. Multifractal analysis of Hg pore size distributions of tectonically deformed coals[J]. International Journal of Coal Geology,2015,144-145:138-152.
[14] NIE B S,LIU X F,YANG L L,et al. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J]. Fuel,2015,158:908-917.
[15] ZHANG D F,ZHANG J,HUO P L,et al. Influences of SO2,NO,and CO2 exposure on pore morphology of various rank coals: implications for coal-fired flue gas sequestration in deep coal seams[J]. Energy & Fuels,2016,30(7):5911-5921.
[16] HE L L,MELNICHENKO Y B,MASTALERZ M,et al. Pore accessibility by methane and carbon dioxide in coal as determined by neutron Scattering[J]. Energy & Fuels,2011,26(3):1975-1983.
[17] ZHOU F B,LIU S Q,PANG Y Q,et al. Effects of coal functional groups on adsorption microheat of coal bed methane[J]. Energy & Fuels,2015, 29(3):1550-1557.
[18] 高晋生. 煤的热解、炼焦和煤焦油加工[M]. 北京:化学工业出版社,2010:18-21. GAO J S. Coaking and pyrolysis of coal,and coal tar processing[M]. Beijing:Chemical Industry Press,2010:18-21.
[19] IBARRA J,MUÑOZ E,MOLINER R. FTIR study of the evolution of coal structure during the coalification process[J]. Organic Geochemistry,1996,24(6/7):725-735.
[20] 王永刚,周剑林,陈艳巨,等. 13C固体核磁共振分析煤中含氧官能团的研究[J]. 燃料化学学报,2013(12):1422-1426. WANG Y G,ZHOU J L,CHEN Y J,et al. Contents of O-containing functional groups in coals by 13C NMR analysis[J]. Journal of Fuel Chemistry and Technology,2013(12):1422-1426.
[21] TENNEY C M,LASTOSKIE C M. Molecular simulation of carbon dioxide adsorption chemically and structurally heterogeneous porous carbons[J]. Environmental Progress,2006,25(4):343-354.
[22] HUANG X,CHU W,SUN W J,et al. Investigation of oxygen-containing group promotion effect on CO2-coal interaction by density functional theory[J]. Applied Surface Science,2014,299(0):162-169.
[23] CUI P,MA Y G,LI H H,et al. Multipoint interactions enhanced CO2 uptake:a zeolite-like zinc-tetrazole framework with 24-nuclear zinc cage[J]. Journal of the American Chemical Society,2012,134(46):18892-18895.
[24] TORRISI A,BELL R G,MELLOT D C. Functionalized MOFs for enhanced CO2 capture[J]. Crystal Growth & Design,2010,10(7):2839-2841.
[25] FURMANIAK S,KOWALCZYK P,TERZYK A,et al. Synergetic effect of carbon nanopore size and surface oxidation on CO2 capture from CO2/CH4 mixtures[J]. Journal of Colloid and Interface Science,2013,397:144-153.
[26] KOWALCZYK P,GAUDEN P A,TERZYK A P,et al. Displacement of methane by coadsorbed carbon dioxide is facilitated in narrow carbon nanopores[J]. The Journal of Physical Chemistry C,2012,116(25):13640-13649.
[27] ZHANG W J,HUANG H L,ZHONG C L,et al. Cooperative effect of temperature and linker functionality on CO2 capture from industrial gas mixtures in metal-organic frameworks: a combined experimental and molecular simulation study[J]. Physical Chemistry Chemical Physics,2012,14(7):2317-2325.
[28] CHANDRA V,YU S U,KIM S H,et al. Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets[J]. Chemical Communications,2012,48(5):735-737.
[29] LIU Y Y,WILCOX J. Molecular simulation of CO2 adsorption in micro- and mesoporous carbons with surface heterogeneity[J]. International Journal of Coal Geology,2012,104:83-95.
[30] LIU Y Y,WILCOX J. Molecular simulation studies of CO2 adsorption by carbon model compounds for carbon capture and sequestration applications[J]. Environmental Science & Technology,2013,47(1):95-101.
[31] NISHINO J. Adsorption of water vapor and carbon dioxide at carboxylic functional groups on the surface of coal[J]. Fuel,2001,80(5):757-764.
[32] 马尚权,付京. 电磁辐射作用下煤中自由基影响瓦斯突出的研究[J]. 华北科技学院学报,2004,11(1):1-4,13. MA S Q,FU J. Research on the free radical affecting methane outburst within coal under the electromagnetic radiation[J]. Journal of North China Institute of Science and Technology,2004,11(1):1-4,13.
[33] 王倩倩,张登峰,王浩浩,等. 封存过程中二氧化碳对煤体理化性质的作用规律[J]. 化工进展,2015,34(1):258-265. WANG Q Q,ZHANG D F,WANG H H,et al. Effect of CO2 on physico-chemical characteristics of coal during sequestration process a perspective [J]. Chemical Industry and Engineering Progress,2015,34(1):258-265.
[34] 相建华,曾凡桂,梁虎珍. 兖州煤大分子结构模型构建及其分子模拟[J]. 燃料化学学报,2011,39(7):481-488. XIANG J H,ZENG F G,LIANG H Z. Model construction of the macromolecular structure of Yanzhou coal and its molecular simulation[J]. Journal of Fuel Chemistry and Technology,2011,39(7):481-488.
[35] 相建华,曾凡桂,李彬,等. 成庄无烟煤大分子结构模型及其分子模拟[J]. 燃料化学学报,2013,41(4):391-399. XIANG J H,ZENG F G,LI B,et al. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. Journal of Fuel Chemistry and Technology,2013,41(4):391-399.
[36] CABRERA S P. Adsorption and reactivity of CO2 on defective graphene sheets[J]. The Journal of Physical Chemistry A,2009,113(2):493-498.
[37] XU S C,IRLE S,MUSAEV D G,et al. Quantum chemical prediction of reaction pathways and rate constants for dissociative adsorption of COx and NOx on the graphite (0001) surface[J]. The Journal of Physical Chemistry B,2006,110(42):21135-21144.
[38] LIU Y Y,WILCOX J. CO2 adsorption on carbon models of organic constituents of gas shale and coal[J]. Environmental Science & Technology,2010,45(2):809-814.
[39] HAO S X,WEN J,YU X P,et al. Effect of the surface oxygen groups on methane adsorption on coals[J]. Applied Surface Science,2013,264:433-442.
[40] JIN D L,LU X Q,ZHANG M M,et al. The adsorption behaviour of CH4 on microporous carbons:effects of surface heterogeneity[J]. Physical Chemistry Chemical Physics,2014,16(22):11037-11046.
[41] 降文萍. 煤阶对煤吸附能力影响的微观机理研究[J]. 中国煤层气,2009,6(2):19-22,34. JIANG W P. Microscopic mechanism study on the influence of coal rank on adsorption capacity[J]. China Coalbed Methane,2009,6(2):19-22,34.
[42] LU X Q,JIN D L,WEI S X,et al. Competitive adsorption of a binary CO2-CH4 mixture in nanoporous carbons: effects of edge-functionalization[J]. Nanoscale,2015,7(3):1002-1012.
[43] KANDAGAL V S,PATHAK A,AYAPPA K G,et al. Adsorption on edge-functionalized bilayer graphene nanoribbons:assessing the role of functional groups in methane uptake[J]. The Journal of Physical Chemistry C,2012,116(44):23394-23403.
[44] KELEMEN S R,KWIATEK L M. Physical properties of selected block Argonne premium bituminous coal related to CO2, CH4, and N2 adsorption[J]. International Journal of Coal Geology,2009,77(1/2):2-9.
[45] KELEMEN S R,AFEWORKI M,GORBATY M L,et al. Thermal transformations of nitrogen and sulfur forms in peat related to coalification[J]. Energy & Fuels,2006,20(2):635-652.
[46] SHAFEEYAN M S,DAUD W M A W,HOUSHMAND A,et al. A review on surface modification of activated carbon for carbon dioxide adsorption[J]. Journal of Analytical and Applied Pyrolysis,2010,89(2):143-151.
[47] MO J J,XUE Y,LIU X Q,et al. Quantum chemical studies on adsorption of CO2 on nitrogen-containing molecular segment models of coal[J]. Surface Science,2013,616:85-92.
[48] CHOI S,WATANABE T,BAE T H,et al. Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases[J]. The Journal of Physical Chemistry Letters,2012,3(9):1136-1141.
[49] HOUSHMAND A,DAUD W M A W,SHAFEEYAN M S. Exploring potential methods for anchoring amine groups on the surface of activated carbon for CO2 adsorption[J]. Separation Science and Technology,2011,46(7):1098-1112.
[50] GADIPELLI S,PATEL H A,GUO Z X. An ultrahigh pore volume drives up the amine stability and cyclic CO2 capacity of a solid-amine@carbon sorbent[J]. Advanced Materials and Processes,2015,27(33):4903-4909.
[51] LI Z Y,LIU Y S,ZHANH C Z,et al. Methane recovery from coal bed gas using modified activated carbons:a combined method for assessing the role of functional groups[J]. Energy & Fuels,2015,29(10):6858-6865.
[52] 刘朝军,梁晓怿,滕娜,等. 气相氧化处理对沥青基球状活性炭表面化学及吸附性能的影响[J]. 新型炭材料,2010,25(6):460-464. LIU C J,LIANG X Y,TENG N,et al. The surface chemistry of pitch-based spherical activated carbon (PSAC) and the effect of gas-oxidation treatment on its adsorption performance[J]. New Carbon Materials,2010,25(6):460-464.
[53] 张登峰,鹿雯,王盼盼,等. 活性炭纤维湿氧化改性表面含氧官能团的变化规律[J]. 煤炭学报,2008,33(4):439-443. ZHANG D F,LU W,WANG P P,et al. Effect of wet oxidized modification on oxygen-containing functional groups of activated carbon fibers[J]. Journal of China Coal Society,2008,33(4):439-443.
[54] 杨长河,曹定龙,俞明芬,等. 吸附DBP饱和活性炭的低温等离子体再生实验[J]. 高电压技术,2015,41(10):3505-3511. YANG C H,CAO D L,YU M F,et al. Experiment on regeneration of activated carbon saturated with dibutyl phthalate by non-thermal plasma[J]. High Voltage Engineering,2015,41(10):3505-3511.
[55] ZHANG D F,HUO P L,LIU W. Behavior of phenol adsorption on thermal modified activated carbon[J]. Chinese Journal of Chemical Engineering,2016,24(4):446-452.
[56] 任阳光,王浩,郑剑平,等. 微波辐照对褐煤表面含氧官能团及孔隙结构的影响[J]. 煤炭工程,2016(2):123-126. REN Y G,WANG H,ZHENG J P,et al. Variation of oxygen-containing functional groups and pore structure in lignite under microwave irradiation[J]. Coal Engineering,2016(2):123-126.
[57] 高峰,王媛,李存梅. 活性炭表面改性及其对CO2吸附性能的影响[J]. 新型炭材料,2014,29(2):96-101. GAO F,WANG Y,LI C M. Surface modification of activated carbon for CO2 adsorption[J]. New Carbon Materials,2014,29(2):96-101.
[58] YANG G,CHEN H L,QIN H D,et al. Amination of activated carbon for enhancing phenol adsorption:effect of nitrogen-containing functional groups[J]. Applied Surface Science,2014,293:299-305.
[59] ZHANG J,JIN X J,GAO J M. et al., Phenol adsorption on nitrogen-enriched activated carbon prepared from bamboo residues[J]. Bioresources,2014,9(1):969-983.
[60] ZHANG D F,GU L L,LI S G,et al. Interactions of supercritical CO2 with coal[J]. Energy & Fuels, 2013,27(1):387-393.
[61] CAO X Y,MASTALERZ M,CHAPPELL M A,et al,Chemical structures of coal lithotypes before and after CO2 adsorption as investigated by advanced solid-state 13C nuclear magnetic resonance spectroscopy[J]. International Journal of Coal Geology,2011,88(1):67-74.
[62] ZHANG D F,WANG H H,WANG Q Q,et al. Interactions of nitric oxide with various rank coals:implications for oxy-coal combustion flue gas sequestration in deep coal seams with enhanced coalbed methane recovery[J]. Fuel,2016,182:704-712.
[63] 缪宇龙,姚楠,李小年. 煤官能团的表征方法概述[J]. 浙江化工,2015,46(1):43-45,48. MIAO Y L,YAO N,LI X N. Overview of coal functional groups characterization methods[J]. Zhejiang Chemical Industry,2015,46(1):43-45,48.
[64] 裴彦鹏,丁云杰,臧娟. Co2C上CO的程序升温脱附和程序升温表面反应研究[J]. 催化学报,2013,34(9):1570-1575. PEI Y P,DING Y J,ZANG J. Temperature-programmed desorption and surface reaction studies of CO on Co2C[J]. Chinese Journal of Catalysis,2013,34(9):1570-1575.
[65] 李湘,李忠,罗灵爱. 程序升温脱附活化能估算新模型[J]. 化工学报,2006,57(2):258-262. LI X,LI Z,LUO L A. New TPD model for activation energy estimation[J]. CIESC Journal,2006,57(2):258-262.
[66] 朱明华. 仪器分析[M]. 3版. 北京:高等教育出版社,2000:286-288. ZHU M H. Instrumental analysis[M]. 3rd ed. Beijing:Higher Education Press,2000:286-288.
[67] 吴正龙,刘洁. 现代X 光电子能谱(XPS)分析技术[J]. 现代仪器,2006(1):50-53. WU Z L,LIU J. Progress of new techniques in modern X-ray photoelectron spectroscopy(XPS)[J]. Modern Instruments,2006(1):50-53.
[68] 苗朝霞,王映红. NMR 技术在天然产物活性物质发现及其药理学研究中的应用[J]. 药学学报,2013,48(9):1383-1389. MIAO Z X,WANG Y H. Application of NMR technique in the discovery and pharmacological studies of active substances from natural products[J]. Acta Pharmaceutica Sinica,2013,48 (9):1383-1389.
[69] Mathews J P,Chaffee A L. The molecular representations of coal —A review[J]. Fuel,2012,96:1-14. |