[1] Ma X, Tian H. Stimuli-responsive supramolecular polymers in aqueous solution[J]. Accounts of Chemical Research, 2014, 47: 1971-1981. [2] 李雪梅, 贺继东. 两亲性聚合物分子自组装的研究进展[J]. 化工进展, 2014, 33(10): 2665-2699. [3] Lu Y, Sun W J, Gu Z. Stimuli-responsive nanomaterials for therapeutic protein delivery[J]. Journal of Controlled Release, 2014, 194: 1-19. [4] Islam R M, Gao Y F, Li X, et al. Stimuli-responsive polymeric materials for human health applications[J]. Chinese Science Bulletin, 2014, 59(32): 4237-4255. [5] Hu J M, Liu S Y. Engineering responsive polymer building blocks with Host-Guest molecular recognition for functional applications[J]. Accounts of Chemical Research, 2014, 47: 2084-2095. [6] Liu J, Detrembleur C, Hurtgen M, et al. Thermo-responsive gold/poly(vinyl alcohol)-b-poly(N-vinylcaprolactam) core-corona nanoparticles as a drug delivery system[J]. Polymer Chemistry, 2014, 5: 5289-5299. [7] Schattling P, Jochum D F, Theato P. Multi-responsive copolymers: Using thermo-, light-and redox stimuli as three independent inputs towards polymeric information processing[J]. Chemical Communications, 2011, 47: 8859-8861. [8] Wu X W, Chen X F, Guan H Y, et al. A recyclable thermo-responsive catalytic system based on poly(N-isopropylacrylamide)-coated POM@SBA-15 nanospheres[J]. Catalysis Communications, 2014, 51: 29-32. [9] Xue B L, Gao L C, Hou Y P, et al. Temperature controlled water/oil wettability of a surface fabricated by a block copolymer: Application as a dual water/oil on-off switch[J]. Advanced Materials, 2013, 25: 273-277. [10] Schild G H. Poly(N-isopropylacrylamide): Experiment, theory and application[J]. Progress in Polymer Science, 1992, 17: 163-249. [11] Nakayama M, Okano T. Polymer terminal group effects on properties of thermoresponsive polymeric micelles with controlled outer-shell chain lengths[J]. Biomacromolecules, 2005, 6: 2320-2327. [12] Chen G H, Haffman S A. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH[J]. Nature, 2014, 5: 2961-2972. [13] Li Q L, Gao C Q, Li S T, et al. Doubly thermo-responsive ABC triblock copolymer nanoparticles prepared through dispersion RAFT Polymerization[J]. Polymer Chemistry, 2014, 5: 2961-2972. [14] Zhou C, Qian S S, Li X J, et al. Synthesis and characterization of well-defined PAA-PEG multi-responsive hydrogels by ATRP and click chemistry[J]. Royal Society of Chemistry Advances, 2014, 4: 54631-54640. [15] Abdellaoui-Arous N, Djadoun S. Poly[2-(N,N-dimethylamino) ethyl methacrylate]/poly(styrene-co-methacrylic acid) interpolymer complexes[J]. Macromolecular Symposium, 2011, 303: 123-133. [16] Liu R, Liao P H, Liu J K, et al. Responsive polymer-coated mesoporous silica as a pH-sensitive nanocarrier for controlled release[J]. Langmuir, 2011, 27: 3095-3099. [17] Schumers J M, Fustin C A, Gohy J F. Light-responsive block copolymers[J]. Macromolecular Rapid Communications, 2010, 31: 1588-1607. [18] Son S, Shin E, Kim B-S. Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery[J]. Biomacromolecules, 2014, 15: 628-634. [19] Zhao H, Sterner S E, Coughlin B E, et al. o-Nitrobenzyl alcohol derivatives: Opportunities in polymer and materials science[J]. Macromolecules, 2012, 45, 1723-1736. [20] Schumers J M, Bertrand O, Fustin C A, et al. Synthesis and self-assembly of diblock copolymers bearing 2-nitrobenzyl photocleavable side groups[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50: 599-608. [21] Theato P. One is enough: Influencing polymer properties with a single chromophoric unit[J]. Angewandte Chemie International Edition, 2011, 50: 5804-5806. [22] Bapat P A, Ray G J, Savin A D, et al. Redox-responsive dynamic-covalent assemblies: Stars and miktoarm stars[J]. Macromolecules, 2013, 46: 2188-2198. [23] Oyaizu K, Nishide H. Radical polymers for organic electronic devices: A radical departure from conjugated polymers[J]. Advanced Materials, 2009, 21: 2339-2344. [24] Egawa Y, Miki R, Seki T. Colorimetric sugar sensing using boronic acid-substituted azobenzenes[J]. Materials, 2014, 7: 1201-1220. [25] Vancoillie G, Pelz S, Holder E, et al. Direct nitroxide mediated (co)polymerization of 4-vinylphenylboronic acid as route towards sugar sensors[J]. Polymer Chemistry, 2012, 3: 1726-1729. [26] Yan Q, Zhou R, Fu C K, et al. CO2-responsive polymeric vesicles that breathe[J]. Angewandte Chemie International Edition, 2011, 50: 4923-4927. [27] Han D, Boissiere O, Kumar S, et al. Two-way CO2-switchable triblock copolymer hydrogels[J]. Macromolecules, 2012, 45: 7440-7445. [28] Chen P Y, Chen J Y, Cao Y. Self-assembly behavior of thermo-and pH-responsive diblock copolymer of poly(N-isopropylacrylamide)-block-poly(acrylic acid) synthesized via reversible addition-fragmentation chain transfer polymerization[J]. Journal of Macromolecular Science Pure and Applied Chemistry, 2013, 50: 478-486. [29] Jiang X Y, Lu G L, Feng C, et al. Poly(acrylic acid)-graft-poly(N-vinylcaprolactam): A novel pH and thermo dual-stimuli responsive system[J]. Polymer Chemistry, 2013, 4: 3876-3884. [30] Bütün V, Armes P S, Billingham C N. Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers[J]. Polymer, 2001, 42: 5993-6008. [31] Zhao Y, Shi X B, Gao H Y, et al. Thermo-and pH-sensitive polyethylene-based diblock and triblock copolymers: Synthesis and self-assembly in aqueous solution[J]. Journal of Materials Chemistry, 2012, 22: 5737-5745. [32] Li G Y, Guo L, Wen Q W, et al. Thermo-and pH-sensitive ionic-crosslinked hollow spheres from chitosan-based graft copolymer for 5-fluorouracil release[J]. International Journal of Biological Macromolecules, 2013, 55: 69-74. [33] Kungwatchakun D, Irie M. Photoresponsive polymers: Photocontrol of the phase separation temperature of aqueous solutions of poly-[N-isopropylacrylamide-co-N-(4-phenylazophenyl) acrylamide][J]. Makromolekulare Chemie, Rapid Communications, 1988, 9: 243-246. [34] Akiyama H, Tamaoki N. Polymers derived from N-isopropylacrylamide and azobenzene-containing acrylamides: Photoresponsive affinity to water[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42: 5200-5214. [35] Blasco E, Schmidt V K J B, Barner-Kowollik C, et al. Dual thermo-and photo-responsive micelles based on miktoarm star polymers[J]. Polymer Chemistry, 2013, 4: 4506-4514. [36] Kuramoto N, Shishido Y, Nagai K. Thermosensitive and redox-active polymers: Preparation and properties of poly(N-ethylacrylamide-co-vinylferrocene) and poly(N,N-diethylacrylamide-co-vinylferrocene) [J]. Journal of Polymer Science Part A: Polymer Chemistry, 1997, 35: 967-1972. [37] Schmidt V K J B, Elbert J, Barner-Kowollik C, et al. Individually addressable thermo-and redox-responsive block copolymers by combining anionic polymerization and RAFT protocols[J]. Macromolecular Rapid Communications, 2014, 35: 708-714. [38] Phillips J D, Gibson I M. Degradable thermoresponsive polymers which display redox-responsive LCST behaviour[J]. Chemical Communications, 2012, 48: 1054-1056. [39] Gyarmati B, Vajna B, Némethy Á, et al. Redox-and pH-responsive cysteamine-modified poly(aspartic acid) showing a reversible Sol-Gel transition[J]. Macromolecular Bioscience, 2013, 13: 633-640. [40] Wang L, Li Y K, Xu Y Q, et al. A facile construction method for pH and oxidation dual-responsive assembly based on ferrocene-modified chitooligosaccharide[J]. Reactive and Functional Polymers, 2014, 76: 1-7. [41] Ding J X, Xiao C S, Yan L S, et al. pH and dual redox responsive nanogel based on poly(l-glutamic acid) as potential intracellular drug carrier[J]. Journal of Controlled Release, 2011, 152: e1-e132. [42] Tang X D, Liang X C, Gao L C, et al. Water-soluble triply-responsive homopolymers of N,N-dimethylaminoethyl methacrylate with a terminal azobenzene moiety[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48: 2564-2570. [43] Achilleos S D, Vamvakaki M. Multiresponsive spiropyran-based copolymers synthesized by atom transfer radical polymerization[J]. Macromolecules, 2010, 43: 7073-7081. [44] Sumaru K, Kameda M, Kanamori T, et al. Characteristic phase transition of aqueous solution of poly(N-isopropylacrylamide) functionalized with spirobenzopyran[J]. Macromolecules, 2004, 37: 4949-4955. [45] Zhang J, Liu H J, Yuan Y, et al. Thermo-, pH-, and light-responsive supramolecular complexes based on a thermoresponsive hyperbranched polymer[J]. American Chemical Society Macro Letters, 2013, 2: 67-71. [46] Dong J, Wang Y N, Zhang J, et al. Multiple stimuli-responsive polymeric micelles for controlled release[J]. Soft Matter, 2013, 9: 370-373. [47] Wu H, Dong J, Li C C, et al. Multi-responsive nitrobenzene-based amphiphilic random copolymer assemblies[J]. Chemical Communications, 2013, 49: 3516-3518. [48] Yuan W Z, Guo W, Zou H, et al. Tunable thermo-, pH-and light-responsive copolymer micelles[J]. Polymer Chemistry, 2013, 4: 3934-3937. [49] Alvarez-Rodríguez R, Arias J F, Santos M, et al. Gold tailored photosensitive elastin-like polymer: Synthesis of temperature, pH and UV-vis sensitive probes[J]. Macromolecular Rapid Communications, 2010, 31: 568-573. [50] Schattling P, Jochum D F, Theato P. Multi-responsive copolymers: Using thermo-, light-and redox stimuli as three independent inputs towards polymeric information processing[J]. Chemical Communications, 2011, 47: 8859-8861. [51] Huang X G, Jiang X L, Yang Q Z, et al. Triple-stimuli (pH/thermo/reduction) sensitive copolymers for intracellular drug delivery[J]. Journal of Materials Chemistry B, 2013, 1: 1860-1868. [52] Jiang X, Feng C, Lu G L, et al. Thermoresponsive homopolymer tunable by pH and CO2[J]. American Chemical Society Macro Letters, 2014, 3: 1121-1125. |