[1] KEASLING J D. Synthetic biology for synthetic chemistry[J]. ACS Chemical Biology,2008,3(1):64-76. [2] KHALIL A S,Collins J J. Synthetic biology:applications come of age[J]. Nature Reviews Genetics,2010,11(5):367-379. [3] FORSTER A C,LEE S Y. Editorial:NextGen SynBio has arrived[J]. Biotechnology Journal,2012,7(7):827-827. [4] WANG Y H,WEI K Y,SMOLKE C D. Synthetic biology:advancing the design of diverse genetic systems[J]. Annual Review of Chemical and Biomolecular Engineering,2013,4:69-102. [5] SINGH V. Recent advancements in synthetic biology:current status and challenges[J]. Gene,2014,535(1):1-11. [6] AGAPAKIS C M. Designing synthetic biology[J]. ACS Synthetic Biology,2013,3(3):121-128. [7] US.Living Foundries [EB/OL]. [2012] http://nas-sites.org/synbioroadmap/files/2014/03/5.Alica-Jackson-Program-Manager-DARPA.pdf. [8] Organization for Economic Cooperation and Development (OECD). Emerging policy issues in synthetic biology [EB/OL] . [2014]http://www.oecd-ilibrary.org/science-and-technology/emerging-policy-issues-in-synthetic-biology_9789264208421-en. [9] US Department of Energy. Synthetic biology,report to congress [EB/OL]. [2013]. http://www.sumberc.org/sites/default/file/DOE%20Synthetic%20Biology%20Report%20to%20CongressFn1.pdf. [10] U.S. Department of Defense. DOD science & technology priorities [EB/OL]. [2014]. http://community.apan.org/afosr/m/alea_stewart/ 135113/download.aspx. [11] US National Academy of Sciences. Industrialization of biology:a roadmap to accelerate the advanced manufacturing of chemicals [EB/OL]. [2015]. www.nap.edu/catalogy/19001. [12] The McKinsey Global Institute. Disruptive technologies:advances that will transform life,business,and the global economy[EB/OL]. [2013]. http://www.mckinsey.com/insights/business_technology/disruptive_technologies. [13] UK Department for Business,Innovation & Skills. Eight Great Technologies:infographics[EB/OL]. [2013]. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/249268/synthetic_biology_infographic.pdf. [14] Transparency Market Research. US synthetic biology market (synthetic DNA,synthetic Genes,synthetic cells,XNA,chassis organisms,DNA synthesis,oligonucleotide synthesis)——Global industry analysis,size,share,growth,trends and forecast 2013-2019 [EB/OL]. [2014-04-08]. http://www.transparencymarketresearch.com/synthetic-biology-market.html. [15] QI H,LI B Z,ZHANG W Q,et al. Modularization of genetic elements promotes synthetic metabolic engineering[J]. Biotechnology Advances,2015,33(7):1412-1419. [16] ELLIS T,ADIE T,BALDWIN G S. DNA assembly for synthetic biology:from parts to pathways and beyond[J]. Integrative Biology,2011,3(2):109-118. [17] KNIGHT T F. Idempotent vector design for standard assembly of BioBricks. MIT Synthetic Biology Working Group Technical Reports[R]. Knight,Thomas,MIT Artificial Intelligence Laboratory:2003. http:// hdl.handle.net/1721.1/21168. [18] Canton B,Labno A,Endy D. Refinement and standardization of synthetic biological parts and devices[J]. Nature Biotechnology,2008,26(7):787-793. [19] Galdzicki M,Clancy K P,Oberortner E,et al. The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology[J]. Nature Biotechnology,2014,32(6):545-550. [20] Bartley B,Beal J,Clancy K,et al. Synthetic biology open language (SBOL) Version 2.0.0.[J]. J. Int. Bioinformatics,2015,12(2):272. [21] RAO C V. Expanding the synthetic biology toolbox:engineering orthogonal regulators of gene expression[J]. Current opinion in biotechnology,2012,23(5):689-694. [22] Desai T A,Rodionov D A,Gelfand M S,et al. Engineering transcription factors with novel DNA-binding specificity using comparative genomics[J]. Nucleic Acids Research,2009,37(8):2493-2503. [23] Liang J C,Bloom R J,Smolke C D. Engineering biological systems with synthetic RNA molecules[J]. Molecular Cell,2011,43(6):915-926. [24] Chubiz L M,Rao C V. Computational design of orthogonal ribosomes[J]. Nucleic Acids Research,2008,36(12):4038-4046. [25] Stock A M,Robinson V L,Goudreau P N. Two-component signal transduction[J]. Annual Review of Biochemistry,2000,69(1):183-215. [26] Lin Q H,Qi H,Wu Y,Yuan Y J. Robust orthogonal recombination system for versatile genomic elements rearrangement in yeast Saccharomyces Cerevisiae[J]. Scientific Reports,2015(5):15249. [27] AN W,CHIN J W. Synthesis of orthogonal transcription-translation networks[J]. Proceedings of the National Academy of Sciences,2009,106(21):8477-8482. [28] Neumann H,Wang K,Davis L,et al. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome[J]. Nature,2010,464(7287):441-444. [29] Esvelt K M,Mali P,Braff J L,et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing[J]. Nature Methods,2013,10(11):1116-1121. [30] Kapp G T,Liu S,Stein A,et al. Control of protein signaling using a computationally designed GTPase/GEF orthogonal pair[J]. Proceedings of the National Academy of Sciences,2012,109(14):5277-5282. [31] Zalatan J G,Lee M E,Almeida R,et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds[J]. Cell,2015 160(1-2):339-350. [32] Inui M,Martello G,Piccolo S. MicroRNA control of signal transduction[J]. Nature Reviews Molecular Cell Biology,2010,11(4):252-263. [33] Siciliano V,Garzilli I,Fracassi C,et al. MiRNAs confer phenotypic robustness to gene networks by suppressing biologyical noise[J]. Nature Communications,2013,4:2364. [34] Pai A,Tanouchi Y,You L. Optimality and robustness in quorum sensing (QS)-mediated regulation of a costly public good enzyme[J]. Proceedings of the National Academy of Sciences,2012,109(48):19810-19815. [35] Hirokawa Y,Kawano H,Tanaka-Masuda K,et al. Genetic manipulations restored the growth fitness of reduced-genome Escherichia coli[J]. Journal of Bioscience and Bioengineering,2013,116(1):52-58. [36] Xu P,Gu Q,Wang W,et al. Modular optimization of multi-gene pathways for fatty acids production in E. coli[J]. Nature Communications,2013,4:1409. [37] Ajikumar P K,Xiao W H,Tyo K E J,et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli[J]. Science,2010,330(6000):70-74. [38] Özaydın B,Burd H,Lee T S,et al. Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production[J]. Metabolic Engineering,2013,15:174-183. [39] Su W,Xiao W H,Wang Y,et al. Alleviating redox imbalance enhances 7-dehydrocholesterol production in engineered Saccharomyces cerevisiae[J]. PloS One,2015,10(6):e0130840. [40] Shong J,Diaz M R J,Collins C H. Towards synthetic microbial consortia for bioprocessing[J]. Current Opinion in Biotechnology,2012,23(5):798-802. [41] Marchand N,Collins C H. Peptide‐based communication system enables Escherichia coli to Bacillus megaterium interspecies signaling[J]. Biotechnology and Bioengineering,2013,110(11):3003-3012. [42] Zhou K,Qiao K,Edgar S,et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J]. Nature Biotechnology,2015,33(4):377-383. [43] Hou B K,Ellis L B M,Wackett L P. Encoding microbial metabolic logic:predicting biodegradation[J]. Journal of Industrial Microbiology and Biotechnology,2004,31(6):261-272. [44] Prather K L,Martin C H. De novo biosynthetic pathways:rational design of microbial chemical factories[J]. Current Opinion in Biotechnology,2008,19(5):468-474. [45] Gonzalez-Lergier J,Broadbelt L J,Hatzimanikatis V. Theoretical considerations and computational analysis of the complexity in polyketide synthesis pathways[J]. Journal of the American Chemical Society,2005,127(27):9930-9938. [46] Hatzimanikatis V,Li C,Ionita J A,et al. Exploring the diversity of complex metabolic networks[J]. Bioinformatics,2005,21(8):1603-1609. [47] Lewis N E,Nagarajan H,Palsson B O. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods[J]. Nature Reviews Microbiology,2012,10(4):291-305. [48] Qi H,Li B Z,Zhang W Q,et al. Modularization of genetic elements promotes synthetic metabolic engineering[J]. Biotechnology Advances,2015,33(7):1412-1419. [49] Brophy J A,Voigt C A. Principles of genetic circuit design[J]. Nature Methods,2014,11(5):508-520. [50] MacDonald J T,Barnes C,Kitney R I,et al. Computational design approaches and tools for synthetic biology[J]. Integrative Biology :Quantitative Biosciences from Nano to Macro,2011,3(2):97-108. [51] Ellis T,Adie T,Baldwin G S. DNA assembly for synthetic biology:from parts to pathways and beyond[J]. Integrative Biology :Quantitative Biosciences from Nano to Macro,2011,3(2):109-118. [52] Ma S,Tang N,Tian J. DNA synthesis,assembly and applications in synthetic biology[J]. Current Opinion in Chemical Biology,2012,16(3-4):260-267. [53] Smolke C D. Building outside of the box:iGEM and the bioBricks foundation[J]. Nature Biotechnology,2009,27(12):1099-1102. [54] Anderson J C,Dueber J E,Leguia M,et al. BglBricks:a flexible standard for biological part assembly[J]. Journal of Biological Engineering,2010,4(1):1. [55] Engler C,Kandzia R,Marillonnet S. A one pot,one step,precision cloning method with high throughput capability[J]. PloS One,2008,3(11):e3647. [56] Gibson D G,Smith H O,Hutchison C A,et al. Chemical synthesis of the mouse mitochondrial genome[J]. Nature Methods,2010,7(11):901-903. [57] Shao Z,Zhao H,Zhao H. DNA assembler,an in vivo genetic method for rapid construction of biochemical pathways[J]. Nucleic Acids Research,2009,37(2):e16. [58] de Kok S,Stanton L H,Slaby T,et al. Rapid and reliable DNA assembly via ligase cycling reaction[J]. ACS Synthetic Biology,2014,3(2):97-106. [59] Sander J D,Joung J K. CRISPR-Cas systems for editing,regulating and targeting genomes[J]. Nature Biotechnology,2014,32(4):347-355. [60] Wood A J,Lo T W,Zeitler B,et al. Targeted genome editing across species using ZFNs and TALENs[J]. Science,2011,333(6040):307-307. [61] Wang H H,Isaacs F J,Carr P A,et al. Programming cells by multiplex genome engineering and accelerated evolution[J]. Nature,2009,460(7257):894-898. [62] David F,Siewers V. Advances in yeast genome engineering[J]. FEMS Yeast Research,2015,15(1):1-14. [63] Hillson N J,Rosengarten R D,Keasling J D. j5 DNA assembly design automation software[J]. ACS Synthetic Biology,2012,1(1):14-21. [64] Appleton E,Tao J,Haddock T,et al. Interactive assembly algorithms for molecular cloning[J]. Nature Methods,2014,11(6):657-662. [65] Sun N,Zhao H. A single-chain TALEN architecture for genome engineering[J]. Molecular BioSystems,2014,10(3):446-453. [66] Metzker M L. Sequencing technologies ——the next generation[J]. Nature Reviews Genetics,2010,11(1):31-46. [67] Yukihira D,Miura D,Saito K,et al. MALDI-MS-based high-throughput metabolite analysis for intracellular metabolic dynamics[J]. Analytical Chemistry,2010,82(10):4278-4282. [68] Yanes O. Metabolomics:playing pinata with single cells[J]. Nature Chemical Biology,2013,9(8):471-473. [69] Rubakhin S S,Romanova E V,Nemes P,et al. Profiling metabolites and peptides in single cells[J]. Nature Methods,2011,8(4s):S20-S29. |