化工进展 ›› 2025, Vol. 44 ›› Issue (10): 5800-5818.DOI: 10.16085/j.issn.1000-6613.2024-1415
• 材料科学与技术 • 上一篇
收稿日期:2024-08-30
修回日期:2025-04-07
出版日期:2025-10-25
发布日期:2025-11-10
通讯作者:
高晓明
作者简介:张婷(1989—),女,博士,讲师,研究方向为金属基燃料的制备与能量可控释放。E-mail:zhangtsust@163.com。
基金资助:
ZHANG Ting1(
), SU Pengyu1, GAO Xiaoming1(
), MA Haixia2
Received:2024-08-30
Revised:2025-04-07
Online:2025-10-25
Published:2025-11-10
Contact:
GAO Xiaoming
摘要:
非晶态材料因独特的短程有序、长程无序结构,在催化领域展现出一定的应用潜力,成为功能材料研究的前沿材料。通过非晶化策略可多维度优化传统晶体纳米材料的微观结构、电子分布、带隙及导电性能,从而显著提升其催化活性、稳定性和抗形变能力。本文系统综述了水热合成、电化学沉积、溶胶-凝胶等几种湿化学策略制备非晶态纳米催化材料的工艺以及能够针对非晶态材料的特殊结构属性进行表征分析的多尺度表征技术手段;介绍了非晶态材料在光电催化领域的最新研究进展;列举了一些代表性的研究工作来阐述非晶态材料的亚稳态结构及其催化活性增强机理,以及催化选择性间的动态关联;并归纳了非晶态材料结构与性能之间的对应关系;最后对非晶态材料的研究现状和发展前景做出总结与展望。
中图分类号:
张婷, 苏鹏宇, 高晓明, 马海霞. 非晶材料在能源催化领域的研究进展[J]. 化工进展, 2025, 44(10): 5800-5818.
ZHANG Ting, SU Pengyu, GAO Xiaoming, MA Haixia. Progress on amorphous materials applied in energy and catalysis[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5800-5818.
| 合成方法 | 催化剂 | 应用领域 | 参考文献 |
|---|---|---|---|
| 水热法 | 非晶态MoO x -Rh | 电催化HER | [ |
| 非晶态CoMoO4 | 电催化HER | [ | |
| 晶态/非晶态磷酸镍锰异质结构 | 储能 | [ | |
| 非晶态CoFe氧化物 | 电催化HER/OER | [ | |
| 溶胶-凝胶法 | 非晶态TiO2 | 光催化降解 | [ |
| 非晶态a-NiFeCeOOH | 电催化OER | [ | |
| 非晶态TiO2介孔纳米片 | 锂电池 | [ | |
| 非晶态氢氧化铟 | 电催化CO2还原反应(CO2RR) | [ | |
| 光化学沉积 | 非晶态CoMn2O x | 储能 | [ |
| 非晶态MnO x /Ti4O7 | 电催化OER/ORR | [ | |
| 非晶态钙掺杂钴酸镧 | 电催化OER | [ | |
| 非晶态氧化铁 | 电催化OER | [ | |
| 共沉淀法 | 非晶态金属氢氧化物 | 电催化 | [ |
| 非晶态NiFeMo | 电催化OER | [ | |
| 非晶-晶态PdCo-Co3S4异质结 | 海水电解HER | [ | |
| 非晶态BiSbO x | 电催化CO2RR | [ | |
| 非晶-晶态CeO x -Sn异质结 | CO2RR | [ | |
| 非晶MnO2包袱N,P,S共掺杂碳球(A-MnO2/NSPC) | 电催化ORR/OER | [ | |
| 非晶Pt x Ru y Se z | 电催化HER | [ | |
| 电化学法 | 非晶态CoFe-H | 电催化OER | [ |
| 非晶态磷硒化钴 | 电催化HER/OER | [ | |
| 非晶态NiFe-OH/NiFeP | 电催化OER | [ | |
| 磁感应加热 | 非晶态MoS x | 电催化HER | [ |
| 溶液相还原法 | 非晶态Ni-Fe | 电催化HER | [ |
表1 几种新型非晶态材料的制备方法及其在能源催化领域中的应用
| 合成方法 | 催化剂 | 应用领域 | 参考文献 |
|---|---|---|---|
| 水热法 | 非晶态MoO x -Rh | 电催化HER | [ |
| 非晶态CoMoO4 | 电催化HER | [ | |
| 晶态/非晶态磷酸镍锰异质结构 | 储能 | [ | |
| 非晶态CoFe氧化物 | 电催化HER/OER | [ | |
| 溶胶-凝胶法 | 非晶态TiO2 | 光催化降解 | [ |
| 非晶态a-NiFeCeOOH | 电催化OER | [ | |
| 非晶态TiO2介孔纳米片 | 锂电池 | [ | |
| 非晶态氢氧化铟 | 电催化CO2还原反应(CO2RR) | [ | |
| 光化学沉积 | 非晶态CoMn2O x | 储能 | [ |
| 非晶态MnO x /Ti4O7 | 电催化OER/ORR | [ | |
| 非晶态钙掺杂钴酸镧 | 电催化OER | [ | |
| 非晶态氧化铁 | 电催化OER | [ | |
| 共沉淀法 | 非晶态金属氢氧化物 | 电催化 | [ |
| 非晶态NiFeMo | 电催化OER | [ | |
| 非晶-晶态PdCo-Co3S4异质结 | 海水电解HER | [ | |
| 非晶态BiSbO x | 电催化CO2RR | [ | |
| 非晶-晶态CeO x -Sn异质结 | CO2RR | [ | |
| 非晶MnO2包袱N,P,S共掺杂碳球(A-MnO2/NSPC) | 电催化ORR/OER | [ | |
| 非晶Pt x Ru y Se z | 电催化HER | [ | |
| 电化学法 | 非晶态CoFe-H | 电催化OER | [ |
| 非晶态磷硒化钴 | 电催化HER/OER | [ | |
| 非晶态NiFe-OH/NiFeP | 电催化OER | [ | |
| 磁感应加热 | 非晶态MoS x | 电催化HER | [ |
| 溶液相还原法 | 非晶态Ni-Fe | 电催化HER | [ |
图10 AN-CuNiFe、AN-NiFe、NiFe-LDH(层状双氧根)、IrO2的极化曲线、Tafel斜率图及在1mol/L的KOH溶液中玻碳电极上的质量活度和TOF比较[63],H-InO x NRs、P-InO xNRs、O-InO xNRs的甲酸法拉第效率、局部电流密度及CO2ER在-0.7V(vs. RHE)和-0.9V(vs. RHE)下H-InO xNRs的长期稳定性测试[64]
| [18] | LI Min, LI Min, ZHAO Mingshu, et al. Rational design of crystalline/amorphous nickel manganese phosphate octahydrate heterostructure for high-performance aqueous and all-solid-state asymmetric supercapacitors[J]. Chemical Engineering Journal, 2024, 482: 148895. |
| [19] | LI Xingyun, XIAO Liangping, ZHOU Ling, et al. Adaptive bifunctional electrocatalyst of amorphous CoFe oxide@2D black phosphorus for overall water splitting[J]. Angewandte Chemie International Edition, 2020, 59(47): 21106-21113. |
| [20] | YI Chuan, LIAO Qi, DENG Wei, et al. The preparation of amorphous TiO2 doped with cationic S and its application to the degradation of DCFs under visible light irradiation[J]. Science of the Total Environment, 2019, 684: 527-536. |
| [21] | BAI Jirong, CHEN Changfan, LIAN Yuebin, et al. Role of amorphous engineering and cerium doping in NiFe oxyhydroxide for electrocatalytic water oxidation[J]. Journal of Colloid and Interface Science, 2024, 663: 280-286. |
| [22] | LIU Yuan, DING Chenfeng, YAN Xiaodong, et al. Interface-strain-confined synthesis of amorphous TiO2 mesoporous nanosheets with stable pseudocapacitive lithium storage[J]. Chemical Engineering Journal, 2021, 420: 129894. |
| [23] | ZHAO Jiayue, HUANG Kai, LIU Changwei, et al. Electro-induced crystallization over amorphous indium hydroxide gels toward ampere- level current density formate electrosynthesis[J]. Advanced Functional Materials, 2024, 34(24): 2316167. |
| [24] | ZHAO Linzhe, LI Yongdan, ZHANG Cuijuan. Amorphous CoMn binary oxides loaded on porous carbon nanosheet as bifunctional electrocatalysts for rechargeable zinc-air battery[J]. Journal of Energy Storage, 2023, 65: 107303. |
| [25] | BAI Fan, HE Yuxiu, XU Lincheng, et al. Improved ORR/OER bifunctional catalytic performance of amorphous manganese oxides prepared by photochemical metal-organic deposition[J]. RSC Advances, 2022, 12(4): 2408-2415. |
| [26] | ZHANG Cuijuan, ZHANG Xinyue, DALY Katelynn, et al. Water oxidation catalysis: Tuning the electrocatalytic properties of amorphous lanthanum cobaltite through calcium doping[J]. ACS Catalysis, 2017, 7(9): 6385-6391. |
| [27] | SMITH Rodney D L, PRÉVOT Mathieu S, FAGAN Randal D, et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis[J]. Science, 2013, 340(6128): 60-63. |
| [28] | KIM Young, KIM Jin Hyun, Yim Hyun JO, et al. Precipitating metal nitrate deposition of amorphous metal oxyhydroxide electrodes containing Ni, Fe, and Co for electrocatalytic water oxidation[J]. ACS Catalysis, 2019, 9(10): 9650-9662. |
| [29] | DUAN Yu, YU Ziyou, HU Shaojin, et al. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis[J]. Angewandte Chemie International Edition, 2019, 58(44): 15772-15777. |
| [30] | SUN Pengliang, ZHENG Xiong, CHEN Anran, et al. Constructing amorphous-crystalline interfacial bifunctional site island-sea synergy by morphology engineering boosts alkaline seawater hydrogen evolution[J]. Advanced Science, 2024, 11(24): 2309927. |
| [31] | LI Xin, WANG Junhao, YUAN Chenyue, et al. A unique amorphous porous BiSbO x nanotube with abundant unsaturated Sb-stabilized BiO8- x sites for efficient CO2 electroreduction in a wide potential window[J]. Advanced Functional Materials, 2024, 34(37): 2402220. |
| [32] | ZHU Ying, SUN Xiang, ZHANG Rong, et al. Interfacial electronic interaction in amorphous-crystalline CeO x -Sn heterostructures for optimizing CO2 to formate conversion[J]. Small, 2024, 20(32): 2400191. |
| [33] | HUO Liping, Minghui LYU, LI Mingjin, et al. Amorphous MnO2 lamellae encapsulated covalent triazine polymer-derived multi-heteroatoms-doped carbon for ORR/OER bifunctional electrocatalysis[J]. Advanced Materials, 2024, 36(18): 2312868. |
| [34] | ZENG Biao, LIU Xinzheng, WAN Li, et al. Grafting ultra-fine nanoalloys with amorphous skin enables highly active and long-lived acidic hydrogen production[J]. Angewandte Chemie International Edition, 2024, 63(15): e202400582. |
| [35] | LIU Wei, LIU Hu, DANG Lianna, et al. Amorphous cobalt-iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo-electrochemical oxygen evolution[J]. Advanced Functional Materials, 2017, 27(14): 1603904. |
| [36] | SHI Yue, ZHOU Shuanglong, LIU Jiaxin, et al. An integrated amorphous cobalt phosphoselenide electrocatalyst with high mass activity boosts alkaline overall water splitting[J]. Applied Catalysis B: Environmental, 2024, 341: 123326. |
| [37] | LIANG Hanfeng, GANDI Appala N, XIA Chuan, et al. Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications[J]. ACS Energy Letters, 2017, 2(5): 1035-1042. |
| [38] | LIU Qiming, NICHOLS Forrest, BHULLER Amrinder, et al. Ultrafast synthesis of amorphous molybdenum sulfide by magnetic induction heating for hydrogen evolution reaction[J]. Applied Catalysis B: Environmental, 2024, 342: 123399. |
| [39] | QIU Yang, XIN Le, LI Wenzhen. Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte[J]. Langmuir, 2014, 30(26): 7893-7901. |
| [40] | LEE YU min, Byeong Min LIM, LEE Hong-Sub. Selector-less crossbar array resistive RAM based on TiO2 fabricated by photochemical metal-organic deposition[J]. Journal of Alloys and Compounds, 2024, 977: 173312. |
| [41] | HAN Xiao, WU Geng, HE Dongsheng, et al. Single-element amorphous metals[J]. Interdisciplinary Materials, 2024, 3(4): 480-491. |
| [42] | CHANG Jiuli, WANG Wenyu, WU Dapeng, et al. Self-supported amorphous phosphide catalytic electrodes for electrochemical hydrogen production coupling with methanol upgrading[J]. Journal of Colloid and Interface Science, 2023, 648: 259-269. |
| [43] | LU Bingzhang, LIU Qiming, WANG Chunyang, et al. Ultrafast preparation of nonequilibrium FeNi spinels by magnetic induction heating for unprecedented oxygen evolution electrocatalysis[J]. Research, 2022, 2022: 9756983. |
| [44] | LI Bo, CHEN Shuangming, TIAN Jie, et al. Amorphous nickel-iron oxides/carbon nanohybrids for an efficient and durable oxygen evolution reaction[J]. Nano Research, 2017, 10(11): 3629-3637. |
| [45] | INDRA Arindam, MENEZES Prashanth W, SAHRAIE Nastaran Ranjbar, et al. Unification of catalytic water oxidation and oxygen reduction reactions: Amorphous beat crystalline cobalt iron oxides[J]. Journal of the American Chemical Society, 2014, 136(50): 17530-17536. |
| [46] | LU Bowen, Rongmin DUN, WANG Wei, et al. Electroless plating synthesis of bifunctional crystalline/amorphous Pd-NiFeB heterostructure catalysts for boosted electrocatalytic water splitting[J]. Applied Catalysis B: Environmental, 2024, 342: 123343. |
| [47] | Karl DELBÉ, CHABERT France. Raman spectroscopy investigation on amorphous polyetherketoneketone (PEKK)[J]. Vibrational Spectroscopy, 2023, 129: 103620. |
| [48] | CHEN Gao, ZHOU Wei, GUAN Daqin, et al. Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3- δ nanofilms with tunable oxidation state[J]. Science Advances, 2017, 3(6): e1603206. |
| [49] | HESS Christian. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions[J]. Chemical Society Reviews, 2021, 50(5): 3519-3564. |
| [50] | COLE K M, KIRK D W, THORPE S J. In situ Raman study of amorphous and crystalline Ni-Co alloys for the alkaline oxygen evolution reaction[J]. Journal of the Electrochemical Society, 2018, 165(15): J3122-J3129. |
| [51] | ZHANG Guixin, CHEN Xiaorong, YU Xinmeng, et al. Crystalline-amorphous heterostructure on the phosphatized P-CoS2/CNT for augmenting the catalytic conversion kinetics of Li-S batteries[J]. Chemical Engineering Journal, 2024, 488: 150696. |
| [52] | XU Huimin, HUANG Chenjin, ZHU Hongrui, et al. Amorphous P- CoOX promotes the formation of hypervalent Ni species in NiFe LDHs by amorphous/crystalline interfaces for excellent catalytic performance of oxygen evolution reaction[J]. Small, 2024,20(37): 2400201. |
| [53] | OVADYAHU Zvi. Structural dynamics in thermal treatment of amorphous indium oxide films[J]. Physica Status Solidi (b), 2020, 257(1): 1900310. |
| [54] | LIU Jun, WANG Liangliang, FEI Zhaoyang, et al. Structure and properties of amorphous CeO2@TiO2 catalyst and its performance in the selective catalytic reduction of NO with NH3 [J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 954-960. |
| [55] | JING Haiyan, ZHAO Peng, LIU Cai, et al. Surface-enhanced Raman spectroscopy for boosting electrochemical CO2 reduction on amorphous-surfaced tin oxide supported by MXene[J]. ACS Applied Materials & Interfaces, 2023, 15(51): 59524-59533. |
| [56] | JOSHI Sindhur, RODNEY John D, UDAYASHANKAR N K. Peculiarities of electrical switching and phase transition dynamics in bismuth-infused Se-Te chalcogenide glasses: From bulk to thin film devices[J].ACS Applied Electronic Materials, 2024, 6(5): 3574-3588. |
| [57] | JANOVSZKY Dora, SVEDA Maria, SYCHEVA Anna, et al. Amorphous alloys and differential scanning calorimetry (DSC)[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(13): 7141-7157. |
| [58] | 张金勇, 赵聪聪, 吴宜谨, 等. (Fe0.33Co0.33Ni0.33)84- x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224. |
| ZHANG Jinyong, ZHAO Congcong, WU Yijin, et al. Structural characteristic and crystallization behavior of the (Fe0.33Co0.33Ni0.33)84- x Cr8Mn8B x high-entropy-amorphous alloy ribbons[J]. Acta Metallurgica Sinica, 2022, 58(2): 215-224. | |
| [59] | SERGIIENKO Ruslan A, SHCHERETSKYI Oleksandr A, ZADOROZHNYY Vladislav Yu, et al. Investigation of Zr55Cu30Al10Ni5 bulk amorphous alloy crystallization[J]. Journal of Alloys and Compounds, 2019, 791: 477-482. |
| [60] | LI Peng, WANG Hui, JIANG Wei, et al. Promoting the cycling stability of amorphous MgNi-based alloy electrodes by mitigating hydrogen-induced crystallization[J]. International Journal of Hydrogen Energy, 2021, 46(9): 6701-6708. |
| [61] | WANG Zhenlong, WANG Kean, XIAO Xuechun, et al. Transition from amorphous to crystalline in FeW oxides: Alterations in active center spin state to improve OER performance[J]. Chemical Engineering Journal, 2024, 496: 154218. |
| [62] | ZHAO Jingjing, GUO Yanna, LI Shuangjun, et al. Amorphous-crystalline porous ruthenium selenide as highly efficient electrocatalysts for alkaline hydrogen evolution[J]. Chemical Engineering Journal, 2024, 485: 150074. |
| [63] | CAI Zhi, LI Lidong, ZHANG Youwei, et al. Amorphous nanocages of Cu-Ni-Fe hydr(oxy)oxide prepared by photocorrosion for highly efficient oxygen evolution[J]. Angewandte Chemie International Edition, 2019, 58(13): 4189-4194. |
| [64] | ZHANG Junbo, YIN Rongguan, SHAO Qi, et al. Oxygen vacancies in amorphous InO x nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction[J]. Angewandte Chemie International Edition, 2019, 58(17): 5609-5613. |
| [1] | KANG Jianxin, YANG Xiuyi, HU Qi, et al. Recent progress of amorphous nanomaterials[J]. Chemical Reviews, 2023, 123(13): 8859-8941. |
| [2] | TIAN Huifeng, YAO Zhixin, LI Zhenjiang, et al. Unlocking more potentials in two-dimensional space: Disorder engineering in two-dimensional amorphous carbon[J]. ACS Nano, 2023, 17(24): 24468-24478. |
| [3] | JABBOUR Ribal, ASHLING Christopher W, ROBINSON Thomas C, et al. Unravelling the molecular structure and confining environment of an organometallic catalyst heterogenized within amorphous porous polymers[J]. Angewandte Chemie International Edition, 2023, 62(44): e202310878. |
| [4] | PARK Kyoung Ryeol, TRAN Duy Thanh, NGUYEN Thanh Tuan, et al. Copper-Incorporated heterostructures of amorphous NiSe x /Crystalline NiSe2 as an efficient electrocatalyst for overall water splitting[J]. Chemical Engineering Journal, 2021, 422: 130048. |
| [5] | SERAIRI Lisa, SANTILLO Chiara, BASSET Philippe, et al. Boosting contact electrification by amorphous polyvinyl alcohol endowing improved contact adhesion and electrochemical capacitance[J]. Advanced Materials, 2024, 36(27): 2403366. |
| [6] | KALE Shital B, BHARDWAJ Aman, LOKHANDE Vaibhav C, et al. Amorphous cobalt-manganese sulfide electrode for efficient water oxidation: Meeting the fundamental requirements of an electrocatalyst[J]. Chemical Engineering Journal, 2021, 405: 126993. |
| [7] | Bon-Ryul KOO, Myeong-Hun JO, KIM Kue-Ho, et al. Amorphous-quantized WO3·H2O films as novel flexible electrode for advanced electrochromic energy storage devices[J]. Chemical Engineering Journal, 2021, 424: 130383. |
| [8] | CHANG Yuming, WEN Yu Ching, CHEN Tsung-Yi, et al. Understanding charge storage mechanisms for amorphous MoSnSe1.5S1.5 nanoflowers in alkali‐ion batteries[J]. Advanced Energy Materials, 2023, 13(29): 2301125. |
| [9] | STRAND Jack, SHLUGER Alexander L. On the structure of oxygen deficient amorphous oxide films[J]. Advanced Science, 2024, 11(8): 2306243. |
| [10] | LI Neng, PENG Jiahe, ZHANG Peng, et al. Amorphous MXene opens new perspectives[J]. Advanced Materials, 2023, 35(26): 2300067. |
| [11] | WU Geng, ZHENG Xusheng, CUI Peixin, et al. A general synthesis approach for amorphous noble metal nanosheets[J]. Nature Communications, 2019, 10: 4855. |
| [12] | LONG Haoyu, GAO Duoduo, WANG Ping, et al. Amorphization-induced reverse electron transfer in NiB cocatalyst for boosting photocatalytic H2 production[J]. Applied Catalysis B: Environmental, 2024, 340: 123270. |
| [13] | HU Zenghui, HAO Xuqiang, FAN Yu, et al. Graphdiyne (g-Cn H2 n-2) nanosheets encapsulated Cu-Co Prussian blue Analogues formed double S-scheme heterojunction for wide spectrum photocatalytic H2 evolution[J]. Chemical Engineering Journal, 2024, 481: 148455. |
| [14] | 宋远航, 曲文刚, 赵凤起, 等. 非晶态纳米NiO的制备及其对AP和GAP基推进剂的催化性能[J]. 火炸药学报, 2022, 45(6): 841-847. |
| SONG Yuanhang, QU Wengang, ZHAO Fengqi, et al. Preparation of amorphous nano-NiO and its catalytic performance on AP and GAP based propellant[J]. Chinese Journal of Explosives & Propellants, 2022, 45(6): 841-847. | |
| [15] | WANG Xiaohan, TIAN Han, YU Xu, et al. Advances and insights in amorphous electrocatalyst towards water splitting[J]. Chinese Journal of Catalysis, 2023, 51: 5-48. |
| [16] | PAN Shuyuan, LI Chen, XIONG Tiantian, et al. Hydrogen spillover in MoO x Rh hierarchical nanosheets boosts alkaline HER catalytic activity[J]. Applied Catalysis B: Environmental, 2024, 341: 123275. |
| [17] | ZHAO Jinxiu, REN Xiang, MA Hongmin, et al. Synthesis of self-supported amorphous CoMoO4 nanowire array for highly efficient hydrogen evolution reaction[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10093-10098. |
| [65] | DONG Chao, LIU Ziwei, LIU Jieyu, et al. Modest oxygen-defective amorphous manganese-based nanoparticle mullite with superior overall electrocatalytic performance for oxygen reduction reaction[J]. Small, 2017, 13(16): 1603903. |
| [66] | YANG Furong, YE Jinyu, GAO Lei, et al. Ultrathin PtNiGaSnMoRe senary nanowires with partial amorphous structure enable remarkable methanol oxidation electrocatalysis[J]. Advanced Energy Materials, 2023, 13(34): 2301408. |
| [67] | ZHANG Shumin, ZHAO Feipeng, CHANG Lo-Yueh, et al. Amorphous oxyhalide matters for achieving lithium superionic conduction[J]. Journal of the American Chemical Society, 2024, 146(5): 2977-2985. |
| [68] | LU Pushun, GONG Sheng, GUO Fuliang, et al. Amorphous bimetallic polysulfide for all-solid-state batteries with superior capacity and low-temperature tolerance[J]. Nano Energy, 2023, 118: 109029. |
| [69] | LI Ruilong, RAO Dewei, ZHOU Jianbin, et al. Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries[J]. Nature Communications, 2021, 12(1): 3102. |
| [70] | ZHENG Tian, HU Pengfei, WANG Zhongchang, et al. 2D amorphous iron selenide sulfide nanosheets for stable and rapid sodium-ion storage[J]. Advanced Materials, 2023, 35(48): 2306577. |
| [71] | WULAN Ba Ri, YI Shasha, LI Sijia, et al. Amorphous nickel pyrophosphate modified graphitic carbon nitride: An efficient photocatalyst for hydrogen generation from water splitting[J]. Applied Catalysis B: Environmental, 2018, 231: 43-50. |
| [72] | ZHANG Xinlei, WU Fei, LI Guicun, et al. Modulating electronic structure and sulfur p-band center by anchoring amorphous Ni@NiS x on crystalline CdS for expediting photocatalytic H2 evolution[J]. Applied Catalysis B: Environmental, 2024, 342: 123398. |
| [73] | ZHANG Congmin, XU Yanling, Chade LYU, et al. Amorphous engineered cerium oxides photocatalyst for efficient nitrogen fixation[J]. Applied Catalysis B: Environmental, 2020, 264: 118416. |
| [74] | LIU Juzhe, GUO Lin. In situ self-reconstruction inducing amorphous species: A key to electrocatalysis[J]. Matter, 2021, 4(9): 2850-2873. |
| [1] | 王水众, 宋国勇. 木质素选择性氢解制备高功能化单酚及其高值利用[J]. 化工进展, 2025, 44(5): 2535-2540. |
| [2] | 岳鑫, 李春迎, 孙道安, 李江伟, 杜咏梅, 马辉, 吕剑. 重氮化合物环丙烷化用多相催化剂研究进展[J]. 化工进展, 2023, 42(5): 2390-2401. |
| [3] | 张大洲, 卢文新, 商宽祥, 胡媛, 朱凡, 张宗飞. 草酸二甲酯加氢制乙醇酸甲酯反应网络分析及其多相加氢催化剂研究进展[J]. 化工进展, 2023, 42(1): 204-214. |
| [4] | 吴静航, 陈臣举, 梁杰, 张春雷. 羰基化合物直接还原胺化合成伯胺催化剂研究进展[J]. 化工进展, 2022, 41(6): 2981-2992. |
| [5] | 陈亚举, 任清刚, 周贤太, 纪红兵. 多孔有机聚合物催化二氧化碳合成环状碳酸酯研究进展[J]. 化工进展, 2021, 40(7): 3564-3583. |
| [6] | 吴淼江, 孙鹏, 李福伟. 含磷多孔有机聚合物的合成及其在多相催化中的应用[J]. 化工进展, 2021, 40(4): 1983-2004. |
| [7] | 陈日志, 姜红, 范益群, 高从堦, 邢卫红. 膜分散技术及其强化反应过程的研究进展[J]. 化工进展, 2020, 39(12): 4812-4822. |
| [8] | 陈伦刚,张兴华,张琦,王晨光,马隆龙. 木质纤维素解聚平台分子催化合成航油技术的进展[J]. 化工进展, 2019, 38(03): 1269-1282. |
| [9] | 陶桂菊, 何文军, 俞峰萍, 李亚男, 杨为民. 环氧乙烷水合制乙二醇多相催化剂的最新进展[J]. 化工进展, 2017, 36(11): 3927-3939. |
| [10] | 周颖, 陈立宇, 李映伟. 纳米多相催化材料在常温反应中的应用[J]. 化工进展, 2015, 34(10): 3530-3539. |
| [11] | 何年志,张学勤,肖美添. 手性修饰催化剂在多相不对称氢化中的研究进展[J]. 化工进展, 2012, 31(12): 2694-2701. |
| [12] | 姜伟丽,豆丙乾,李沛东,周红军. 烯烃歧化反应中的负载氧化钨催化剂[J]. 化工进展, 2012, 31(12): 2686-2693. |
| [13] | 杨 雄,刘定华,刘晓勤. 甲醇羰基合成碳酸二甲酯反应机理及多相催化剂研究进展[J]. 化工进展, 2012, 31(03): 545-551. |
| [14] | 李碧静1,2,葛 鑫1,2,陈 彤1,胡徐腾3,王公应1. 苯酚酯交换合成碳酸二苯酯的多相催化剂研究进展 [J]. 化工进展, 2010, 29(5): 847-. |
| [15] | 彭朴. 固体核磁共振波谱在石油化工多相催化研究中的应用进展 [J]. 化工进展, 2008, 27(2): 157-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |