化工进展 ›› 2025, Vol. 44 ›› Issue (10): 5627-5639.DOI: 10.16085/j.issn.1000-6613.2024-1485

• 化工过程与装备 • 上一篇    

相变冷却与液冷耦合的锂电池组热管理系统多目标优化

许智(), 姜昌伟(), 李兵, 亓俣权, 钱发, 李光伟   

  1. 长沙理工大学能源与动力工程学院,湖南 长沙 410114
  • 收稿日期:2024-09-09 修回日期:2024-12-27 出版日期:2025-10-25 发布日期:2025-11-10
  • 通讯作者: 姜昌伟
  • 作者简介:许智(1998—),男,硕士研究生,研究方向为锂电池热管理技术。E-mail:320220100@qq.com
  • 基金资助:
    国家自然科学基金(52208094);国家自然科学基金(52078053)

Multi-objective optimization of thermal management system for lithium battery packs coupled with phase-change cooling and liquid cooling

XU Zhi(), JIANG Changwei(), LI Bing, QI Yuquan, QIAN Fa, LI Guangwei   

  1. School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, Hubei, China
  • Received:2024-09-09 Revised:2024-12-27 Online:2025-10-25 Published:2025-11-10
  • Contact: JIANG Changwei

摘要:

针对一种相变材料耦合液冷散热的电池热管理系统进行了基于神经网络与非支配排序遗传算法(NSGA-Ⅱ)结合的多目标优化。首先使用数值模拟方法研究了不同电池间距、冷却液流速和冷却液通道纵横比等设计变量对电池散热效果的影响,然后利用拉丁超立方抽样(LHS)生成设计变量经数值模拟获得目标值进行神经网络训练,建立起设计变量与电池最高温度和最大温差之间的映射关系。随后采用带精英保留策略的NSGA-Ⅱ算法找到最小化电池包体积(Vb)、电池最高温度(Tmax)和电池最大温差(∆Tmax)的三目标优化Pareto前沿并确定最佳设计。最终优化结果表明,神经网络与NSGA-Ⅱ算法结合的多目标优化方法十分有效。相较于初始设计,优化后的Vb降低了7.6%,能量密度提升了8.22%;电池组Tmax和ΔTmax分别为34.89℃和4.02℃;相变材料(PCM)的利用率提升了7%;冷却液泵功耗从8.79×10-4W降低到了4.065×10-4W,降低幅度高达53.75%。

关键词: 锂电池热管理系统, 相变冷却, 液冷, 多目标优化, 计算流体力学, 神经网络

Abstract:

A multi-objective optimization based on the combination of neural network and non-dominated sorting genetic algorithm (NSGA-Ⅱ) was carried out for a battery thermal management system with phase change material-coupled liquid-cooling heat dissipation. Firstly, the effects of design variables such as different cell spacing, coolant flow rate and coolant channel aspect ratio on the thermal dissipation effect of the battery were investigated using numerical simulation. The neural network was trained by simulating the target values obtained from the design variables using Latin Hypercubic Sampling (LHS) to obtain the mapping relationship between the design variables and the maximum battery temperature, Tmax, and the maximum temperature difference, ∆Tmax. Subsequently, the NSGA-Ⅱ algorithm with an elite retention strategy was adopted to seek the Pareto front for the three-objective optimization of minimizing the volume (Vb), the maximum temperature (Tmax), and the maximum temperature difference (∆Tmax) of the battery pack, and to determine the optimal design. The ultimate optimization results indicate that the multi-objective optimization approach combining the neural network with the NSGA-Ⅱ algorithm is highly effective. In comparison with the initial design, the Vb is decreased by 7.6%, while the energy density is enhanced by 8.22%. The Tmax and ∆Tmax of the battery group are 34.89℃ and 4.02℃ respectively. Additionally, the utilization rate of the phase change material (PCM) is increased by 7%. The power consumption of the coolant pump has decreased from 8.79×10-4W to 4.065×10-4W, with a reduction of up to 53.75%.

Key words: lithium battery pack thermal management system, phase change cooling, liquid cooling, multi-objective optimization, computational fluid dynamics, neural networks

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn