化工进展 ›› 2025, Vol. 44 ›› Issue (8): 4808-4820.DOI: 10.16085/j.issn.1000-6613.2025-0517

• 过程模拟与仿真前沿与趋势 • 上一篇    

化工领域中的人工智能:人工神经网络技术的应用与前景

鹿兰停1,2(), 康胜1(), 许文轲1, 蒋子强1, 王德民1, 刘东阳1,2, 赵亮1,2(), 徐春明1,2   

  1. 1.中国石油大学(北京)化学工程与环境学院,北京 102249
    2.中国石油大学(北京)重质油全国重点实验室,北京 102249
  • 收稿日期:2025-04-08 修回日期:2025-06-02 出版日期:2025-08-25 发布日期:2025-09-08
  • 通讯作者: 赵亮
  • 作者简介:鹿兰停(2001—),女,硕士研究生,研究方向为人工神经网络优化下“数据+机理”模型在催化裂解反应中的开发。E-mail:lulanting2023@163.com
    康胜(2003—),男,本科生,研究方向为人工神经网络技术在化工中的应用。E-mail:2022010452@student.cup.edu.cn
  • 基金资助:
    中国博士后科学基金(BX20240424);国家自然科学基金(22325808);国家自然科学基金(U22B20140);国家自然科学基金(22021004);国家自然科学基金(L2324201);NSFC-CAS联合项目(XK2023HXC001)

Artificial intelligence in the chemical industry: Applications and prospects of artificial neural network technology

LU Lanting1,2(), KANG Sheng1(), XU Wenke1, JIANG Ziqiang1, WANG Demin1, LIU Dongyang1,2, ZHAO Liang1,2(), XU Chunming1,2   

  1. 1.College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249, China
    2.State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
  • Received:2025-04-08 Revised:2025-06-02 Online:2025-08-25 Published:2025-09-08
  • Contact: ZHAO Liang

摘要:

伴随着人工智能技术的快速发展以及应用成本的降低,人工智能已经渗透于众多传统行业,推动产业格局变革。化工行业作为全球经济的重要组成部分之一,长期受到高能耗和环境污染等挑战,并面临工艺优化和系统调度复杂、催化剂研发效率低、故障诊断困难以及产物预测不准等一系列“卡脖子”难题,而人工神经网络(artificial neural network,ANN)技术凭借强大的非线性映射、自组织自适应学习及大数据驱动特性,已经逐步融入到化工基础研究和生产过程,为解决这些难题带来了新契机。本文综述了ANN催化剂设计与选用、反应条件优化、化工产品分析预测、过程系统优化以及环境监测与治理等化工领域的应用现状,探讨了ANN驱动化工核心难题解决的突破路径及具体案例,并分析了现有ANN在化工中应用的不足与挑战,最后提出了ANN未来在化工领域中应用的发展方向。

关键词: 人工神经网络, 化工智能化, 过程优化, 数据驱动

Abstract:

With rapid development of artificial intelligence (AI) technology and the reduction in application costs, AI has penetrated many traditional industries, driving changes in the industrial landscape. The chemical industry, an important part of the global economy, has long faced challenges such as high energy consumption and environmental pollution. It is confronted with a series of "neck-breaking" problems, including complex process optimization and system scheduling, low catalyst R&D efficiency, difficulty in fault diagnosis and inaccurate product prediction. Artificial neural network (ANN), with its powerful nonlinear mapping, self-organization and adaptive learning and big data-driven characteristics, has been gradually integrated into basic chemical research and production processes, providing new opportunities to solve these problems. This paper reviewed the current status of ANN applications in the chemical industry, including catalyst design and selection, reaction condition optimization, chemical product analysis and prediction, process system optimization, and environmental monitoring and management. It discussed breakthrough paths and specific cases of ANN-driven chemical industries, analyzed the shortcomings and challenges of existing ANN applications in the chemical industry, and finally proposed directions for future applications in the chemical industry.

Key words: artificial neural networks, chemical intelligence, process optimisation, data-driven

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn