化工进展 ›› 2025, Vol. 44 ›› Issue (8): 4808-4820.DOI: 10.16085/j.issn.1000-6613.2025-0517
• 过程模拟与仿真前沿与趋势 • 上一篇
鹿兰停1,2(
), 康胜1(
), 许文轲1, 蒋子强1, 王德民1, 刘东阳1,2, 赵亮1,2(
), 徐春明1,2
收稿日期:2025-04-08
修回日期:2025-06-02
出版日期:2025-08-25
发布日期:2025-09-08
通讯作者:
赵亮
作者简介:鹿兰停(2001—),女,硕士研究生,研究方向为人工神经网络优化下“数据+机理”模型在催化裂解反应中的开发。E-mail:lulanting2023@163.com基金资助:
LU Lanting1,2(
), KANG Sheng1(
), XU Wenke1, JIANG Ziqiang1, WANG Demin1, LIU Dongyang1,2, ZHAO Liang1,2(
), XU Chunming1,2
Received:2025-04-08
Revised:2025-06-02
Online:2025-08-25
Published:2025-09-08
Contact:
ZHAO Liang
摘要:
伴随着人工智能技术的快速发展以及应用成本的降低,人工智能已经渗透于众多传统行业,推动产业格局变革。化工行业作为全球经济的重要组成部分之一,长期受到高能耗和环境污染等挑战,并面临工艺优化和系统调度复杂、催化剂研发效率低、故障诊断困难以及产物预测不准等一系列“卡脖子”难题,而人工神经网络(artificial neural network,ANN)技术凭借强大的非线性映射、自组织自适应学习及大数据驱动特性,已经逐步融入到化工基础研究和生产过程,为解决这些难题带来了新契机。本文综述了ANN催化剂设计与选用、反应条件优化、化工产品分析预测、过程系统优化以及环境监测与治理等化工领域的应用现状,探讨了ANN驱动化工核心难题解决的突破路径及具体案例,并分析了现有ANN在化工中应用的不足与挑战,最后提出了ANN未来在化工领域中应用的发展方向。
中图分类号:
鹿兰停, 康胜, 许文轲, 蒋子强, 王德民, 刘东阳, 赵亮, 徐春明. 化工领域中的人工智能:人工神经网络技术的应用与前景[J]. 化工进展, 2025, 44(8): 4808-4820.
LU Lanting, KANG Sheng, XU Wenke, JIANG Ziqiang, WANG Demin, LIU Dongyang, ZHAO Liang, XU Chunming. Artificial intelligence in the chemical industry: Applications and prospects of artificial neural network technology[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4808-4820.
| 人工神经网络类型 | 主要特点 | 优势 | 局限性 |
|---|---|---|---|
| 前馈神经网络 | |||
| MLP | 含输入层、隐藏层、输出层,通过非线性激活函数实现复杂映射 | 通用性强,可解决分类、回归问题,适用于化工过程建模等场景 | 需大量数据支撑,易过拟合,对高维数据处理效率低 |
| CNN | 引入卷积层和池化层,提取数据局部空间特征 | 擅长处理图像、传感器阵列等具有空间相关性的数据,参数共享降低计算复杂度 | 对非空间结构数据(如文本)适用性差,需依赖大量标注图像数据 |
| RBF | 以径向基函数为激活函数,具备局部逼近能力 | 学习速度快,适合小样本数据建模,在快速响应场景中表现优异 | 全局逼近能力弱,隐藏层节点数需经验确定,泛化能力受限 |
| 反馈神经网络 | |||
| RNN | 隐藏层神经元环状连接,存储历史信息 | 对短序列数据(如简单时间序列)建模有效,结构简单易实现 | 长序列训练时梯度消失问题显著,难以捕捉长期依赖关系 |
| LSTM | 引入门控机制(输入门、遗忘门、输出门),选择性记忆信息 | 有效解决长序列梯度消失问题,擅长捕捉长期依赖,适用于语音识别、故障预测等场景 | 结构复杂、参数众多,训练耗时较长,对计算资源要求高 |
| GRU | LSTM 简化版,合并遗忘门与输入门,参数更少 | 计算效率高,实时性强,适用于化工过程动态监控等对响应速度要求高的场景 | 长期依赖捕捉能力略弱于LSTM,复杂时序任务中表现受限 |
表1 前馈神经网络和反馈神经网络的结构对比
| 人工神经网络类型 | 主要特点 | 优势 | 局限性 |
|---|---|---|---|
| 前馈神经网络 | |||
| MLP | 含输入层、隐藏层、输出层,通过非线性激活函数实现复杂映射 | 通用性强,可解决分类、回归问题,适用于化工过程建模等场景 | 需大量数据支撑,易过拟合,对高维数据处理效率低 |
| CNN | 引入卷积层和池化层,提取数据局部空间特征 | 擅长处理图像、传感器阵列等具有空间相关性的数据,参数共享降低计算复杂度 | 对非空间结构数据(如文本)适用性差,需依赖大量标注图像数据 |
| RBF | 以径向基函数为激活函数,具备局部逼近能力 | 学习速度快,适合小样本数据建模,在快速响应场景中表现优异 | 全局逼近能力弱,隐藏层节点数需经验确定,泛化能力受限 |
| 反馈神经网络 | |||
| RNN | 隐藏层神经元环状连接,存储历史信息 | 对短序列数据(如简单时间序列)建模有效,结构简单易实现 | 长序列训练时梯度消失问题显著,难以捕捉长期依赖关系 |
| LSTM | 引入门控机制(输入门、遗忘门、输出门),选择性记忆信息 | 有效解决长序列梯度消失问题,擅长捕捉长期依赖,适用于语音识别、故障预测等场景 | 结构复杂、参数众多,训练耗时较长,对计算资源要求高 |
| GRU | LSTM 简化版,合并遗忘门与输入门,参数更少 | 计算效率高,实时性强,适用于化工过程动态监控等对响应速度要求高的场景 | 长期依赖捕捉能力略弱于LSTM,复杂时序任务中表现受限 |
| 神经网络模型 | 应用场景 | 性能指标 | 参考文献 |
|---|---|---|---|
| ANN | TRM | R²=0.97(DRM),R²=0.98(SRM/POX) | [ |
| MLP+CNN | SECM approach 曲线动力学分析 | MAE=0.14 | [ |
| 迁移学习+ANN | 芬顿氧化工艺 | R²>0.95 | [ |
| MIV+BP | SCR脱硝系统 | R²=0.9941 | [ |
| C3-CNN | SCR脱硝系统 | R²=0.96788 | [ |
| GA-ANN | La1-x Sr x (Cu1-x Mn x )1-y Pd y O3体系 | R²=0.9967 | [ |
| DFT+GAN | Rh-Ru合金表面合成氨反应 | TOF=1.1×10-3 | [ |
| DFT+LGBM+NSGA-Ⅲ | CO2甲烷化 | R²>0.90,RMSE<0.31 | [ |
| GNN+DFT | DACs设计 | R²=0.985(训练集),R²=0.952(测试集) | [ |
表2 在催化剂设计与优化中不同模型的对比
| 神经网络模型 | 应用场景 | 性能指标 | 参考文献 |
|---|---|---|---|
| ANN | TRM | R²=0.97(DRM),R²=0.98(SRM/POX) | [ |
| MLP+CNN | SECM approach 曲线动力学分析 | MAE=0.14 | [ |
| 迁移学习+ANN | 芬顿氧化工艺 | R²>0.95 | [ |
| MIV+BP | SCR脱硝系统 | R²=0.9941 | [ |
| C3-CNN | SCR脱硝系统 | R²=0.96788 | [ |
| GA-ANN | La1-x Sr x (Cu1-x Mn x )1-y Pd y O3体系 | R²=0.9967 | [ |
| DFT+GAN | Rh-Ru合金表面合成氨反应 | TOF=1.1×10-3 | [ |
| DFT+LGBM+NSGA-Ⅲ | CO2甲烷化 | R²>0.90,RMSE<0.31 | [ |
| GNN+DFT | DACs设计 | R²=0.985(训练集),R²=0.952(测试集) | [ |
| 神经网络 | 应用场景 | 平均绝对误差 | 均方根误差 | 参考文献 |
|---|---|---|---|---|
| LSTM | ||||
| CNN-LSTM | 预测BR反应器温度 | 0.9798 | 1.0019 | [ |
| PSO-LSTM | 预测催化裂化反应温度和分馏塔塔底液位 | 0.0081(液位),0.0087(温度) | 0.0104(液位),0.1220(温度) | [ |
| CS-LSTM | 0.1386(液位),0.2533(温度) | 0.0110(液位),0.3115(温度) | ||
| ICBL-LSTM | 预测乙烯裂解炉丙烯收率 | 0.0290 | 0.0456 | [ |
| BP | ||||
| BP | 预测反应釜温度 | 0.268 | 2.391 | [ |
| RBF-BP | 0.433 | 0.507 | ||
| CPSO-RBF-BP | 0.114 | 0.263 |
表3 不同神经网络模型性能对比
| 神经网络 | 应用场景 | 平均绝对误差 | 均方根误差 | 参考文献 |
|---|---|---|---|---|
| LSTM | ||||
| CNN-LSTM | 预测BR反应器温度 | 0.9798 | 1.0019 | [ |
| PSO-LSTM | 预测催化裂化反应温度和分馏塔塔底液位 | 0.0081(液位),0.0087(温度) | 0.0104(液位),0.1220(温度) | [ |
| CS-LSTM | 0.1386(液位),0.2533(温度) | 0.0110(液位),0.3115(温度) | ||
| ICBL-LSTM | 预测乙烯裂解炉丙烯收率 | 0.0290 | 0.0456 | [ |
| BP | ||||
| BP | 预测反应釜温度 | 0.268 | 2.391 | [ |
| RBF-BP | 0.433 | 0.507 | ||
| CPSO-RBF-BP | 0.114 | 0.263 |
| 对比项目 | 优点 | 缺点 | 适用场景 |
|---|---|---|---|
| 静态调度 | 能预先安排好调度,减少任务调度开销,适合长期规划,易于实施 | 缺乏灵活性,无法根据系统资源和任务执行情况进行及时调整 | 适用于生产条件稳定、变化少的场景,如炼油、化肥生产等较稳定的连续生产过程 |
| 动态调度 | 能灵活应对化工生产中实时变化,可及时处理突发事件,提高生产效率 | 需实时数据支持,算法复杂,依赖于先进计算工具 | 适用于生产条件多变、不确定性较高的场景,如精细化工、制药等多品种的间歇生产过程 |
表4 对比分析静态与动态调度的优缺点以及适用场景
| 对比项目 | 优点 | 缺点 | 适用场景 |
|---|---|---|---|
| 静态调度 | 能预先安排好调度,减少任务调度开销,适合长期规划,易于实施 | 缺乏灵活性,无法根据系统资源和任务执行情况进行及时调整 | 适用于生产条件稳定、变化少的场景,如炼油、化肥生产等较稳定的连续生产过程 |
| 动态调度 | 能灵活应对化工生产中实时变化,可及时处理突发事件,提高生产效率 | 需实时数据支持,算法复杂,依赖于先进计算工具 | 适用于生产条件多变、不确定性较高的场景,如精细化工、制药等多品种的间歇生产过程 |
| [1] | 宋泓阳, 孙晓岩, 项曙光. 人工神经网络在化工过程中的应用进展[J]. 化工进展, 2016, 35(12): 3755-3762. |
| SONG Hongyang, SUN Xiaoyan, XIANG Shuguang. Progress on the application of artificial neural network in chemical industry[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3755-3762. | |
| [2] | ILIYASU Abdullah M, DAOUD Mohammad Sh, SALAMA Ahmed Sayed, et al. Towards an intelligent integrated methodology for accurate determination of volume percentages in three-phase flow systems[J]. Scientific Reports, 2025, 15: 8407. |
| [3] | 刘方, 徐龙, 马晓迅. BP神经网络的发展及其在化学化工中的应用[J]. 化工进展, 2019, 38(6): 2559-2573. |
| LIU Fang, XU Long, MA Xiaoxun. Development of BP neural network and its application in chemistry and chemical engineering[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2559-2573. | |
| [4] | 韩玉. 人工智能在化工行业的应用[J]. 橡塑资源利用, 2019(2): 25-28. |
| HAN Yu. Application of artificial intelligence in chemical industry[J]. Rubber & Plastics Resources Utilization, 2019(2): 25-28. | |
| [5] | 张卫华, 吴重光, 王春利, 等. 基于神经网络的化工过程故障诊断[J]. 计算机与应用化学, 2010, 27(7): 987-991. |
| ZHANG Weihua, WU Chongguang, WANG Chunli, et al. The artificial neural network based fault diagnosis of chemical process[J]. Computers and Applied Chemistry, 2010, 27(7): 987-991. | |
| [6] | 赵晓弘, 胡西娅, 纪博睿, 等. 人工神经网络在石油化工中的应用研究进展[J]. 当代化工, 2024, 53(5): 1228-1232. |
| ZHAO Xiaohong, HU Xiya, JI Borui, et al. Research progress in application of artificial neural network in petrochemical industry[J]. Contemporary Chemical Industry, 2024, 53(5): 1228-1232. | |
| [7] | ROSENBLATT F. The perceptron: A probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6): 386-408. |
| [8] | ARBIB M. Review of ‘perceptrons: An introduction to computational geometry’ (MINSKY M and PAPERT S, 1969)[J]. IEEE Transactions on Information Theory, 1969, 15(6): 738-739. |
| [9] | HOPFIELD J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(10): 3088-3092. |
| [10] | RUMELHART David E, HINTON Geoffrey E, WILLIAMS Ronald J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. |
| [11] | 罗祉婧, 韦振宇, 郑荻凡, 等. 卷积神经网络在化工领域的应用综述[J]. 云南化工, 2023, 50(2): 21-23. |
| LUO Zhijing, WEI Zhenyu, ZHENG Difan, et al. Review of the application of CNN in the field of chemical engineering[J]. Yunnan Chemical Technology, 2023, 50(2): 21-23. | |
| [12] | 张硕羲, 姚涵文, 曹存盼, 等. 基于深度学习算法的化工园区火灾检测方法[J]. 信息技术与信息化, 2025(2): 117-120. |
| ZHANG Shuoxi, YAO Hanwen, CAO Cunpan, et al. Fire detection method in chemical industry park based on deep learning algorithm[J]. Information Technology and Informatization, 2025(2): 117-120. | |
| [13] | 于志省, 李应成, 王宇遥, 等. 人工神经网络在材料开发中的应用研究进展[J]. 工程塑料应用, 2023, 51(2): 158-164. |
| YU Zhixing, LI Yingcheng, WANG Yuyao, et al. Research progress on application of artificial neural network in material development[J]. Engineering Plastics Application, 2023, 51(2): 158-164. | |
| [14] | 吴步军. 催化剂计算机辅助设计与优化[J]. 化学工程与装备, 2015(3): 4-7. |
| WU Bujun. Catalyst for computer aided design and optimization[J]. Chemical Engineering & Equipment, 2015(3): 4-7. | |
| [15] | 韩晓霞, 赵超凡. 神经网络及遗传算法在催化剂设计中的应用[J]. 现代化工, 2018, 38(8): 213-216. |
| HAN Xiaoxia, ZHAO Chaofan. Application of artificial neural network and genetic algorithm in catalyst design[J]. Modern Chemical Industry, 2018, 38(8): 213-216. | |
| [16] | DE SOUZA Paulo A L, AFZAL Raja Muhammad, CAMACHO Felipe Gomes, et al. Catalyst development for the tri-reforming of methane (TRM) process by integrated singular machine learning models[J]. The Canadian Journal of Chemical Engineering, 2025, 103(2): 758-770. |
| [17] | RAJAPAKSE Dinuka, MECKSTROTH Josh, JANTZ Dylan T, et al. Deconvoluting kinetic rate constants of catalytic substrates from scanning electrochemical approach curves with artificial neural networks[J]. ACS Measurement Science Au, 2022, 3(2): 103-112. |
| [18] | ALTIKAT Aysun, CEYLAN Zeynep, GULBE Alper. Forecasting of chlorophenols removing with advanced oxidation processes: An artificial neural networks application[J]. Environmental Engineering and Management Journal, 2020, 19(8): 1275-1287. |
| [19] | 马善为, 曲艳超, 刘吉, 等. 基于样本优化的BP神经网络SCR脱硝催化剂体积设计[J]. 节能, 2021, 40(2): 24-28. |
| MA Shanwei, QU Yanchao, LIU Ji, et al. Design of SCR catalyst volume based on BP neural network with optimized net training[J]. Energy Conservation, 2021, 40(2): 24-28. | |
| [20] | HAN Peilun, SHEN Xiaoqian, SHEN Boxiong. A simulation study on NO x reduction efficiency in SCR catalysts utilizing a modern C3-CNN algorithm[J]. Fuel, 2024, 363: 130985. |
| [21] | TARJOMANNEJAD Ali, NAKHOSTIN PANAHI Parvaneh, FARZI Ali, et al. Design of an intelligent system for modeling and optimization of perovskite-type catalysts for catalytic reduction of NO with CO[J]. Chemical Engineering Research and Design, 2025, 214: 54-64. |
| [22] | ISHIKAWA Atsushi. Heterogeneous catalyst design by generative adversarial network and first-principles based microkinetics[J]. Scientific Reports, 2022, 12(1): 11657. |
| [23] | HISAMA Kaoru, ISHIKAWA Atsushi, ASPERA Susan Menez, et al. Theoretical catalyst screening of multielement alloy catalysts for ammonia synthesis using machine learning potential and generative artificial intelligence[J]. The Journal of Physical Chemistry C, 2024, 128(44): 18750-18758. |
| [24] | ASIF Muhammad, YAO Chengxi, ZUO Zitu, et al. Machine learning-driven catalyst design, synthesis and performance prediction for CO2 hydrogenation[J]. Journal of Industrial and Engineering Chemistry, 2025, 144: 32-47. |
| [25] | QIU Qianhong, DU Changming. An application of graph neural network in pollution abatement: Acceleration heterogeneous catalyst design[J]. Materials Today Communications, 2024, 40: 109916. |
| [26] | BLAKEMORE David C, CASTRO Luis, CHURCHER Ian, et al. Organic synthesis provides opportunities to transform drug discovery[J]. Nature Chemistry, 2018, 10(4): 383-394. |
| [27] | 杨婷, 董亚超, 都健. 基于卷积神经网络的偶联反应催化剂及速率常数预测方法[J]. 过程工程学报, 2024, 24(7): 833-842. |
| YANG Ting, DONG Yachao, DU Jian. Catalyst and reaction rate constant prediction methods of coupling reaction based on convolutional neural network[J]. The Chinese Journal of Process Engineering, 2024, 24(7): 833-842. | |
| [28] | 吕翠英, 华贲. 乙烯生产装置优化人工神经网络模型的建立[J]. 石油炼制与化工, 1997, 28(1): 48-51. |
| LU Cuiying, HUA Ben. Establishment of a neural network model for ethylene plant optimization[J]. Petroleum Processing and Petrochemicals, 1997, 28(1): 48-51. | |
| [29] | 莫裕俊. 基于BP神经网络的乙醇制备烯烃反应条件最优化设计[J]. 江西化工, 2023, 39(2): 88-91. |
| MO Yujun. Optimization design of olefin reaction conditions for ethanol preparation based on BP neural network[J]. Jiangxi Chemical Industry, 2023, 39(2): 88-91. | |
| [30] | 薄翠梅, 张湜, 林锦国, 等. 径向基函数神经网络在精馏塔软测量中的应用[J]. 南京工业大学学报(自然科学版), 2002, 24(3): 82-86. |
| BO Cuimei, ZHANG Shi, LIN Jinguo, et al. RBF neural networks applied in soft-measuring of distillation columns[J]. Journal of Nanjing University (Natural Science Edition), 2002, 24(3): 82-86. | |
| [31] | 顾恒昌, 牟鹏, 李建伟. 基于交叉迭代BLSTM网络的乙烯裂解炉建模[J]. 化工学报, 2019, 70(2): 548-555. |
| GU Hengchang, MU Peng, LI Jianwei. Modeling and application of ethylene cracking furnace based on cross-iterative BLSTM network[J]. CIESC Journal, 2019, 70(2): 548-555. | |
| [32] | 洪娟, 田文德. 基于群智能算法优化LSTM的催化裂化预测研究[J]. 山东化工, 2023, 52(18): 92-96. |
| HONG Juan, TIAN Wende. Prediction of catalytic cracking based on swarm intelligence algorithm optimization of LSTM[J]. Shandong Chemical Industry, 2023, 52(18): 92-96. | |
| [33] | WANG Zhiwen, YANG Bolun, CHEN Chun, et al. Modeling and optimization for the secondary reaction of FCC gasoline based on the fuzzy neural network and genetic algorithm[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(3): 175-180. |
| [34] | SELVAMURUGAN Aishwarya, GANESAN Parthiban Kunnathur, NAYAK Shashank S, et al. CNN-LSTM-based nonlinear model predictive controller for temperature trajectory tracking in a batch reactor[J]. ACS Omega, 2024, 9(47): 47203-47212. |
| [35] | HONG Juan, TIAN Wende. Prediction in catalytic cracking process based on swarm intelligence algorithm optimization of LSTM[J]. Processes, 2023, 11(5): 1454. |
| [36] | TANG Xiaowei, XU Bing, XU Zichen. Reactor temperature prediction method based on CPSO-RBF-BP neural network[J]. Applied Sciences, 2023, 13(5): 3230. |
| [37] | 霍学松, 陈瀑, 戴嘉伟, 等. 微小型近红外光谱仪的应用进展与展望[J]. 分析测试学报, 2022, 41(9): 1301-1313. |
| HUO Xuesong, CHEN Pu, DAI Jiawei, et al. Progress and prospect of application of miniatured near infrared spectrometers[J]. Journal of Instrumental Analysis, 2022, 41(9): 1301-1313. | |
| [38] | 陈笑, 宦克为, 赵环, 等. 基于变量频次加权自助采样法的近红外光谱变量选择方法研究[J]. 分析化学, 2021, 49(10): 1743-1749. |
| CHEN Xiao, HUAN Kewei, ZHAO Huan, et al. Variable selection of near infrared spectroscopy based on variable frequency weighted bootstrap sampling[J]. Chinese Journal of Analytical Chemistry, 2021, 49(10): 1743-1749. | |
| [39] | CHEN Hui, LIN Zan, TAN Chao. Application of near-infrared spectroscopy and class-modeling to antibiotic authentication[J]. Analytical Biochemistry, 2020, 590: 113514. |
| [40] | 宦克为, 刘小溪, 郑峰, 等. 基于蒙特卡罗特征投影法的小麦蛋白质近红外光谱测量变量选择[J]. 农业工程学报, 2013, 29(4): 266-271. |
| HUAN Kewei, LIU Xiaoxi, ZHENG Feng, et al. Variable selection of near-infrared spectroscopy for measuring wheat protein based on MC-LPG[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(4): 266-271. | |
| [41] | LIU Taiang, ZHANG Qing, CHANG Dongping, et al. Characterization of tobacco leaves by near-infrared reflectance spectroscopy and electronic nose with support vector machine[J]. Analytical Letters, 2018, 51(12): 1935-1943. |
| [42] | 郑运, 杨思雨, 王涛, 等. 基于数据增强策略和卷积神经网络的近红外光谱分析研究[J]. 分析化学, 2024, 52(9): 1266-1276. |
| ZHENG Yun, YANG Siyu, WANG Tao, et al. Near infrared spectral analysis based on data augmentation strategy and convolutional neural network[J]. Chinese Journal of Analytical Chemistry, 2024, 52(9): 1266-1276. | |
| [43] | 于水, 宦克为, 刘小溪, 等. 并联卷积神经网络的近红外光谱定量分析模型[J]. 光谱学与光谱分析, 2024, 44(6): 1627-1635. |
| YU Shui, HUAN Kewei, LIU Xiaoxi, et al. Quantitative analysis modeling of near infrared spectroscopy with parallel convolution neural network[J]. Spectroscopy and Spectral Analysis, 2024, 44(6): 1627-1635. | |
| [44] | 王妞, 宦克为, 傅钲淇, 等. 高效通道注意力结合卷积神经网络的近红外光谱分析模型研究[J]. 长春理工大学学报(自然科学版), 2024, 47(1): 16-22. |
| WANG Niu, HUAN Kewei, FU Zhengqi, et al. Research on the near-infrared spectral analysis model based on efficient channel attention and convolutional neural networks[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2024, 47(1): 16-22. | |
| [45] | CHE Jikai, LIANG Qing, XIA Yifan, et al. The study on nondestructive detection methods for internal quality of Korla fragrant pears based on near-infrared spectroscopy and machine learning[J]. Foods, 2024, 13(21): 3522. |
| [46] | ZHU Yaolin, ZHANG Yong, CHEN Xin, et al. Non-destructive identification of virgin Cashmere and chemically modified wool fibers based on fractional order derivative and improved wavelength extraction algorithm using NIR spectroscopy and chemometrics[J]. Journal of Natural Fibers, 2024, 21(1): 2409901. |
| [47] | LU Xinyu, WU Haoping, MA Hao, et al. Deep learning-assisted spectrum-structure correlation: State-of-the-art and perspectives[J]. Analytical Chemistry, 2024, 96(20): 7959-7975. |
| [48] | 李爱民, 王志, 魏砾宏, 等. 固体废弃物热解产物的神经网络预测模型[J]. 沈阳航空工业学院学报, 2002, 19(1): 5-9. |
| LI Aimin, WANG Zhi, WEI Lihong, et al. The prediction mode of neural net on pyrolysis product of solid waste[J]. Journal of Shenyang Institute of Aeronautcal Engineering, 2002, 19(1): 5-9. | |
| [49] | HE Chasheng, ZHANG Chengwei, BIAN Tengfei, et al. A review on artificial intelligence enabled design, synthesis, and process optimization of chemical products for industry 4.0[J]. Processes, 2023, 11(2): 330. |
| [50] | WEI Jennifer N, DUVENAUD David, Aln ASPURU-GUZIK. Neural networks for the prediction of organic chemistry reactions[J]. ACS Central Science, 2016, 2(10): 725-732. |
| [51] | 王国清, 杜志国, 张利军, 等. 应用BP神经网络预测石脑油热裂解产物收率[J]. 石油化工, 2007, 36(7): 699-704. |
| WANG Guoqing, DU Zhiguo, ZHANG Lijun, et al. Applying BP neural networks to predict product-yields of naphtha steam cracking[J]. Petrochemical Technology, 2007, 36(7): 699-704. | |
| [52] | 邓志平, 任少君, 翁琪航, 等. 基于物理信息神经网络的生物质气化产物分布预测方法[J]. 动力工程学报, 2024, 44(5): 719-726. |
| DENG Zhiping, REN Shaojun, WENG Qihang, et al. Prediction method for biomass gasification product distribution based on physics-informed neural network[J]. Journal of Chinese Society of Power Engineering, 2024, 44(5): 719-726. | |
| [53] | CONDE-GUTIÉRREZ R A, MÁRQUEZ-NOLASCO A, CRUZ-JACOBO U, et al. Simultaneous increase of parameters of an experimental absorption system: Neural network inverse optimization methodology with multi-inputs[J]. Applied Soft Computing, 2024, 159: 111606. |
| [54] | ALSAYAH Ahmed Mohsin, ALSHUKRI Mohammed J, Samer ALI, et al. Prediction of overall heat transfer coefficient in concentric tube heat exchangers using artificial neural networks: A comparative study with empirical correlations[J]. International Communications in Heat and Mass Transfer, 2025, 163: 108723. |
| [55] | JIN Qi, CHEN Xuemei, YANG Chaolei, et al. ANN-based optimization of disk-shaped microchannel heat exchanger for thermal and hydraulic performance improvement[J]. International Journal of Thermal Sciences, 2025, 213: 109805. |
| [56] | HAMEDI Homa, KARIMI Iftekhar A, GUNDERSEN Truls. Simulation-based approach for integrating work within heat exchange networks for sub-ambient processes[J]. Energy Conversion and Management, 2020, 203: 112276. |
| [57] | MIRANDA C B, COSTA C B B, CABALLERO J A, et al. Optimal synthesis of multiperiod heat exchanger networks: A sequential approach[J]. Applied Thermal Engineering, 2017, 115: 1187-1202. |
| [58] | 鄢烈祥, 麻德贤. 全局优化搜索新算法——列队竞争算法(Ⅰ) 解非线性和混合整数非线性规划问题[J]. 化工学报, 1999, 50(5): 663-670. |
| YAN Liexiang, MA Dexian. A new algorithm for global optimization search-line-up competition algorithm (Ⅰ) Solving nonlinear programming and mixed-integer nonlinear programming problems[J]. Journal of Chemical Industry and Engineering (China), 1999, 50(5): 663-670. | |
| [59] | 朱添宇, 孙琳, 任超, 等. 基于全周期持续节能的换热网络滑动窗口分析与裕量缓释优化控制[J]. 化工进展, 2023, 42(3): 1195-1205. |
| ZHU Tianyu, SUN Lin, REN Chao, et al. Sliding window analysis and slow-release margin optimal control for heat exchanger networks based on full cycle sustainable energy saving[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1195-1205. | |
| [60] | 毕立群, 麻德贤. Hopfield神经网络与专家系统相结合的换热网络设计方法有效性分析[J]. 高校化学工程学报, 1998, 12(4): 361-367. |
| BI Liqun, MA Dexian. Efficiency analysis of HNN/ES based system for heat exchanger network design[J]. Journal of Chemical Engineering of Chinese Universities, 1998, 12(4): 361-367. | |
| [61] | FAWAZ Ahmad, HUA Yuchao, LE CORRE Steven, et al. Topology optimization of heat exchangers: A review[J]. Energy, 2022, 252: 124053. |
| [62] | DONG Yinghao, ZHANG Wenjie, TAO Yingjie. CTAB modified TiO2 supported on HZSM-5 zeolite for enhanced photocatalytic degradation of azophloxine[J]. Journal of Materials Research and Technology, 2020, 9(4): 9403-9411. |
| [63] | 阎文雯, 仇翔. 聚丙烯连续生产过程的短期调度和经济优化[J]. 石油化工自动化, 2008, 44(4): 30-33. |
| YAN Wenwen, QIU Xiang. Short-term scheduling and economic optimization of continuous polypropylene production process[J]. Automation in Petro-Chemical Industry, 2008, 44(4): 30-33. | |
| [64] | WANG Zhenjiang, CAO Zhengcai, HUANG Ran, et al. A study on attribute selection for job shop scheduling problem[C]//2017 13th IEEE Conference on Automation Science and Engineering (CASE). Xi’an, China: IEEE, 2017: 1032-1037. |
| [65] | HUBERT Stefan, MEINTSCHEL Jonas, BLEIDORN Dominik, et al. Production scheduling using deep reinforcement learning and discrete event simulation[J]. Chemie Ingenieur Technik, 2023, 95(7): 1003-1011. |
| [66] | 张蕾, 吴重光. 基于神经网络的PID控制器在PCS7上的设计与应用[J]. 科技资讯, 2011, 9(20): 60-61. |
| ZHANG Lei, WU Chongguang. Design and application of PID controller based on neural network in PCS7[J]. Science & Technology Information, 2011, 9(20): 60-61. | |
| [67] | Daniel RANGEL-MARTINEZ, RICARDEZ-SANDOVAL Luis A. A recurrent reinforcement learning strategy for optimal scheduling of partially observable job-shop and flow-shop batch chemical plants under uncertainty[J]. Computers & Chemical Engineering, 2024, 188: 108748. |
| [68] | 杨维, 李歧强. 粒子群优化算法综述[J]. 中国工程科学, 2004, 6(5): 87-94. |
| YANG Wei, LI Qiqiang. Survey on particle swarm optimization algorithm[J]. Engineering Science, 2004, 6(5): 87-94. | |
| [69] | IKONEN Teemu J, HELJANKO Keijo, HARJUNKOSKI Iiro. Reinforcement learning of adaptive online rescheduling timing and computing time allocation[J]. Computers & Chemical Engineering, 2020, 141: 106994. |
| [70] | LEE Chia-Yen, HUANG Yitao, CHEN Peng-Jen. Robust-optimization-guiding deep reinforcement learning for chemical material production scheduling[J]. Computers & Chemical Engineering, 2024, 187: 108745. |
| [71] | 虞玮玮. 化工项目环境监理中污染防治与环境风险防范[J]. 化工管理, 2021(26): 27-28. |
| YU Weiwei. Pollution prevention and environmental risks controlling in environmental supervision of chemical projects[J]. Chemical Enterprise Management, 2021(26): 27-28. | |
| [72] | 王旭坪, 于秀丽, 王天腾. 基于集成学习策略的化工园区大气污染影响预测[J]. 运筹与管理, 2021, 30(11): 127-134. |
| WANG Xuping, YU Xiuli, WANG Tianteng. Air pollution impact prediction of chemical industry park based on ensemble learning strategy[J]. Operations Research and Management Science, 2021, 30(11): 127-134. | |
| [73] | XIN Ruo bo, JIANG Zhi Fang, LI Ning, et al. An air quality predictive model of Licang of Qingdao City based on BP neural network[J]. Advanced Materials Research, 2013, 756/757/758/759: 3366-3371. |
| [74] | 诸飞, 俞阿龙. 基于改进GA-BP神经网络的工厂污水监测系统研究[J]. 现代电子技术, 2018, 41(11): 133-138. |
| ZHU Fei, YU Along. Research on factory sewage monitoring system based on improved GA-BP neural network[J]. Modern Electronics Technique, 2018, 41(11): 133-138. | |
| [75] | ELZWAYIE Adnan, Ahmed EL-SHAFIE, YASEEN Zaher Mundher, et al. RBFNN-based model for heavy metal prediction for different climatic and pollution conditions[J]. Neural Computing and Applications, 2017, 28(8): 1991-2003. |
| [76] | DU Jiao, SHANG Xiaoxian, LI Tao, et al. Recycling and modeling of chromium from sludge produced from magnetic flocculation treatment of chromium-containing wastewater[J]. Process Safety and Environmental Protection, 2022, 157: 20-26. |
| [77] | 陈洪刚, 董波, 唐相臣. 基于优化FCM算法的土壤污染监测点科学布设方法[J]. 粘接, 2024, 51(12): 189-192. |
| CHEN Honggang, DONG Bo, TANG Xiangchen. A scientific method for laying out soil pollution monitoring points based on optimized FCM algorithm[J]. Adhesion, 2024, 51(12): 189-192. |
| [1] | 杨证禄, 杨立峰, 路晓飞, 锁显, 张安运, 崔希利, 邢华斌. 机器学习加速多孔吸附剂筛选发现的研究进展[J]. 化工进展, 2025, 44(8): 4288-4301. |
| [2] | 戴征舒, 左元浩, 陈孝罗, 张犁, 赵根, 张学军, 张华. 机器学习在喷射器研究中的应用进展[J]. 化工进展, 2024, 43(S1): 1-12. |
| [3] | 焦竞, 刘琳琳, 都健. 基于代理模型的碳捕集与电厂集成调度优化[J]. 化工进展, 2024, 43(11): 6059-6067. |
| [4] | 王雄, 杨振宁, 李越, 申威峰. 基于化工机理与工业数据孪生建模的甲醇精馏过程优化[J]. 化工进展, 2024, 43(1): 310-319. |
| [5] | 陈森, 殷鹏远, 杨证禄, 莫一鸣, 崔希利, 锁显, 邢华斌. 功能固体材料智能合成研究进展[J]. 化工进展, 2023, 42(7): 3340-3348. |
| [6] | 李乔, 田思琪, 冯泽民, 董立春. 甲醇和三甲氧基硅烷共沸物分离过程模拟和优化[J]. 化工进展, 2021, 40(5): 2431-2439. |
| [7] | 姚羽曼, 罗文嘉, 戴一阳. 数据驱动方法在化工过程故障诊断中的研究进展[J]. 化工进展, 2021, 40(4): 1755-1764. |
| [8] | 刘方, 徐龙, 马晓迅. BP神经网络的发展及其在化学化工中的应用[J]. 化工进展, 2019, 38(06): 2559-2573. |
| [9] | 贺凯迅, 曹鹏飞. 基于智能优化算法的软测量模型建模样本优选及应用[J]. 化工进展, 2018, 37(07): 2516-2523. |
| [10] | 王海宁,夏陆岳,周猛飞,朱鹏飞,潘海天. 过程工业软测量中的多模型融合建模方法[J]. 化工进展, 2014, 33(12): 3157-3163. |
| [11] | 杜雨静1,2,范英芳1. 人工神经网络用于三苯基丙烯腈衍生物的定量结构-活性关系模型 [J]. 化工进展, 2010, 29(1): 25-. |
| [12] | 刘 建 新. 基于神经网络模型的对二甲苯氧化过程优化 [J]. 化工进展, 2006, 25(6): 708-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |