化工进展 ›› 2025, Vol. 44 ›› Issue (8): 4795-4807.DOI: 10.16085/j.issn.1000-6613.2025-066

• 过程系统工程的模拟与仿真 • 上一篇    下一篇

基于SVR-NSGA-算法的混合电池热仿真优化

莫文迪1(), 王思静1, 林伊婷1,2(), 练成1,3(), 刘洪来1,3   

  1. 1.华东理工大学化工学院, 化学工程联合国家重点实验室,上海 200030
    2.华东理工大学机械与动力工程学院,上海 200030
    3.华东理工大学化学与分子工程学院,上海 200030
  • 收稿日期:2025-05-08 修回日期:2025-07-21 出版日期:2025-08-25 发布日期:2025-09-08
  • 通讯作者: 林伊婷,练成
  • 作者简介:莫文迪(2000—),男,硕士研究生,研究方向为电池热管理。E-mail:Y82220080@mail.ecuat.edu.cn
  • 基金资助:
    国家自然科学基金(12447149);国家自然科学基金(22278127)

Simulation and optimization of hybrid battery thermal management based on SVR-NSGA- algorithm

MO Wendi1(), WANG Sijing1, LIN Yiting1,2(), LIAN Cheng1,3(), LIU Honglai1,3   

  1. 1.State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200030, China
    2.School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200230, China
    3.School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200030, China
  • Received:2025-05-08 Revised:2025-07-21 Online:2025-08-25 Published:2025-09-08
  • Contact: LIN Yiting, LIAN Cheng

摘要:

锂电池热管理是确保电池热安全的关键,虽然传统的有限元分析方法被广泛应用于锂电池热管理研究,但存在计算效率低、参数设置复杂等局限性。本文提出了一种结合特征工程和有限元分析结果的机器学习模型,通过正交设计方法有效减小所需的有限元仿真数据量;利用支持向量回归(SVR)模型准确预测混合电池包的温度特征;采用非支配排序遗传算法Ⅱ(NSGA-Ⅱ)系统分析了电池结构参数与冷却策略的协同优化关系,提出了兼顾散热性能与能耗效率的最佳方案。与传统方法相比,本方法在保持预测精度的同时大幅提升了计算效率,为电池热管理系统的智能化设计提供了新思路。本研究构建的“特征提取-机器学习建模-多目标优化”技术框架,不仅能够准确预测电池温度特性,还能为不同应用场景下的热管理方案优化提供决策支持。该方法在电动汽车和储能系统等领域具有重要的工程应用价值,有助于提升电池系统的安全性与能效。

关键词: 电池热管理, 有限元分析, 支持向量回归, 非支配排序遗传算法

Abstract:

Battery thermal management is critical to ensure the thermal safety of lithium-ion batteries. Although traditional finite element analysis methods have been widely applied in battery thermal management research, they have limitations, such as low computational efficiency and complex parameter settings. This paper presented a machine learning model that combines feature engineering with finite element analysis results. By employing an orthogonal design method, the required finite element simulation data volume was effectively reduced. The support vector regression (SVR) model was used to accurately predict the temperature characteristics of a hybrid battery pack. The non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) was applied to systematically analyze the synergistic optimization relationship between battery structural parameters and cooling strategies, proposing an optimal solution that balanced heat dissipation performance and energy consumption efficiency. Compared with traditional methods, the proposed approach significantly enhanced computational efficiency while maintaining prediction accuracy, providing a novel approach for the intelligent design of battery thermal management systems. The “feature extraction-machine learning modeling-multi-objective optimization” framework constructed in this study not only accurately predicteed battery temperature characteristics but also provided decision support for optimizing thermal management solutions in various application scenarios. This method has significant engineering application value in fields such as electric vehicles and energy storage systems, contributing to the improvement of battery system safety and energy efficiency.

Key words: battery thermal management, finite element analysis, support vector regression, non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ)

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn