化工进展 ›› 2025, Vol. 44 ›› Issue (8): 4688-4700.DOI: 10.16085/j.issn.1000-6613.2024-1926
• 过程系统工程的模拟与仿真 • 上一篇
黄灵军(
), 朱卿宇, 张宇, 孙维祺, 窦东阳(
), 王启立(
)
收稿日期:2024-11-22
修回日期:2024-12-24
出版日期:2025-08-25
发布日期:2025-09-08
通讯作者:
窦东阳,王启立
作者简介:黄灵军(1992—),男,博士,讲师,研究方向为过程系统工程。E-mail:hlj@cumt.edu.cn。
基金资助:
HUANG Lingjun(
), ZHU Qingyu, ZHANG Yu, SUN Weiqi, DOU Dongyang(
), WANG Qili(
)
Received:2024-11-22
Revised:2024-12-24
Online:2025-08-25
Published:2025-09-08
Contact:
DOU Dongyang, WANG Qili
摘要:
复杂工艺流程与氢网络的协同优化是炼厂氢网络集成中的难题。为此,本文提出了一种基于进化响应面的协同优化方法,同步优化甲醇工艺流程与氢网络。该方法构建了CO₂加氢制甲醇流程中反应器、闪蒸罐和精馏塔的机理模型,基于此得到的样本集建立相应的进化响应面模型,利用机理模型验证响应面模型的优化结果并进行修正,提出高效的优化流程框架。将此方法应用于某炼厂的氢网络集成优化,综合考虑了甲醇产量、设备制造成本和用氢成本等因素。结果表明,该方法能够在提升甲醇产量的同时优化炼厂的氢资源分配,降低设备制造与用氢成本,提升了炼厂七百多万元的年度经济效益。该方法求解高效,优化结果的准确性较传统方法显著提高,为炼厂氢网络与甲醇工艺流程的协同优化提供了有效的解决方案。
中图分类号:
黄灵军, 朱卿宇, 张宇, 孙维祺, 窦东阳, 王启立. 进化响应面驱动的CO2加氢制甲醇工艺与氢网络同步优化[J]. 化工进展, 2025, 44(8): 4688-4700.
HUANG Lingjun, ZHU Qingyu, ZHANG Yu, SUN Weiqi, DOU Dongyang, WANG Qili. Simultaneous optimization of hydrogen network with CO₂ hydrogenation to methanol process based on evolutionary response surface method[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4688-4700.
| 反应 | M1的表达式 | M1值 | M2表达式 | M2值 |
|---|---|---|---|---|
| 式(1) | KCO | 2.16×10-5exp(46800/RT) | KCO/K1 | 9.11×107exp(-51638/RT) |
| 式(2) | 7.05×10-7exp(61700/RT) | 6.59×10-9exp(101384.87/RT) | ||
| 式(3) | 7.05×10-7exp(61700/RT) | 2.78×104exp(2946.87/RT) |
表1 推动力项常数表达式与计算结果
| 反应 | M1的表达式 | M1值 | M2表达式 | M2值 |
|---|---|---|---|---|
| 式(1) | KCO | 2.16×10-5exp(46800/RT) | KCO/K1 | 9.11×107exp(-51638/RT) |
| 式(2) | 7.05×10-7exp(61700/RT) | 6.59×10-9exp(101384.87/RT) | ||
| 式(3) | 7.05×10-7exp(61700/RT) | 2.78×104exp(2946.87/RT) |
| 反应 | ln M1 | ln M2 | |||
|---|---|---|---|---|---|
| A | B | A | B | ||
| 式(1) | -10.7428 | 5629.06 | 18.3272 | -6210.97 | |
| 式(2) | -14.1651 | 7421.22 | -18.8370 | 12194.48 | |
| 式(3) | -14.1651 | 7421.22 | 10.2330 | 354.45 | |
表2 用于Aspen Plus的推动力常数系数
| 反应 | ln M1 | ln M2 | |||
|---|---|---|---|---|---|
| A | B | A | B | ||
| 式(1) | -10.7428 | 5629.06 | 18.3272 | -6210.97 | |
| 式(2) | -14.1651 | 7421.22 | -18.8370 | 12194.48 | |
| 式(3) | -14.1651 | 7421.22 | 10.2330 | 354.45 | |
| 项 | 常数 | A | B | |
|---|---|---|---|---|
| 1 | 1 | 0 | 0 | p |
| 2 | -18.8717 | 10103.44 | ||
| 3 | KCO | -10.7428 | 5629.06 | |
| 4 | -29.6144 | 15732.50 | ||
| 5 | -14.165 | 7421.22 | ||
| 6 | -33.037 | 17524.66 |
表3 吸附项常数系数
| 项 | 常数 | A | B | |
|---|---|---|---|---|
| 1 | 1 | 0 | 0 | p |
| 2 | -18.8717 | 10103.44 | ||
| 3 | KCO | -10.7428 | 5629.06 | |
| 4 | -29.6144 | 15732.50 | ||
| 5 | -14.165 | 7421.22 | ||
| 6 | -33.037 | 17524.66 |
| 装置 | 氢源 | 装置 | 氢阱 | ||
|---|---|---|---|---|---|
| 摩尔分数 | 流量/kmol·h-1 | 摩尔分数 | 流量/kmol·h-1 | ||
| SRU | 0.9300 | 623.80 | HCU | 0.8061 | 2495.00 |
| CRU | 0.8000 | 415.80 | NHT | 0.7885 | 180.20 |
| HCU | 0.7500 | 1801.90 | DHT | 0.7757 | 554.40 |
| NHT | 0.7500 | 138.60 | CNHT | 0.7514 | 720.70 |
| DHT | 0.7300 | 346.50 | MS | 0.9000 | 8582.41 |
| CNHT | 0.7000 | 457.40 | |||
| MS | 0.6253 | 2232.74 | |||
| HP | 0.9500 | 7782.42 | |||
表4 氢源和氢阱参数
| 装置 | 氢源 | 装置 | 氢阱 | ||
|---|---|---|---|---|---|
| 摩尔分数 | 流量/kmol·h-1 | 摩尔分数 | 流量/kmol·h-1 | ||
| SRU | 0.9300 | 623.80 | HCU | 0.8061 | 2495.00 |
| CRU | 0.8000 | 415.80 | NHT | 0.7885 | 180.20 |
| HCU | 0.7500 | 1801.90 | DHT | 0.7757 | 554.40 |
| NHT | 0.7500 | 138.60 | CNHT | 0.7514 | 720.70 |
| DHT | 0.7300 | 346.50 | MS | 0.9000 | 8582.41 |
| CNHT | 0.7000 | 457.40 | |||
| MS | 0.6253 | 2232.74 | |||
| HP | 0.9500 | 7782.42 | |||
| 取值 | 反应器温度/℃ | 反应器压力/bar | 闪蒸罐1温度/℃ | 闪蒸罐1压力/bar | 闪蒸罐2温度/℃ | 闪蒸罐2压力/bar |
|---|---|---|---|---|---|---|
| 上限 | 280 | 120 | 45 | 119 | 45 | 3 |
| 下限 | 220 | 80 | 35 | 79 | 35 | 1 |
表5 决策变量取值上下限
| 取值 | 反应器温度/℃ | 反应器压力/bar | 闪蒸罐1温度/℃ | 闪蒸罐1压力/bar | 闪蒸罐2温度/℃ | 闪蒸罐2压力/bar |
|---|---|---|---|---|---|---|
| 上限 | 280 | 120 | 45 | 119 | 45 | 3 |
| 下限 | 220 | 80 | 35 | 79 | 35 | 1 |
| 实验次数 | 反应体积空速(GHSV)/m3·kg-1·h-1 | P/bar | T/℃ | 组分分压/bar | 转换率(实验)/% | 选择性(实验)/% | 转换率(模拟)/% | 选择性(模拟)/% | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| H2 | CO2 | N2 | Ar | CO2 | H2 | CH3OH | CO | CO2 | H2 | CH3OH | CO | ||||||||
| 1 | 7800 | 50 | 200 | 34.9 | 8.9 | 6.2 | 0 | 4 .6 | 2.4 | 56 | 44 | 4.6 | 2.5 | 57 | 43 | ||||
| 2 | 7800 | 50 | 210 | 34.9 | 8.9 | 6.2 | 0 | 7.7 | 3.4 | 45 | 55 | 7.2 | 3.5 | 46 | 54 | ||||
| 3 | 7800 | 50 | 220 | 34.9 | 8.9 | 6.2 | 0 | 11.1 | 4.8 | 43 | 57 | 11.1 | 5.0 | 38 | 62 | ||||
| 4 | 7800 | 50 | 230 | 34.9 | 8.9 | 6.2 | 0 | 15.8 | 6.3 | 38 | 62 | 15.8 | 6.7 | 33 | 67 | ||||
| 5 | 7800 | 50 | 210 | 12.7 | 6.2 | 6.2 | 24.8 | 5.1 | 2.9 | 20 | 80 | 5.2 | 4.3 | 34 | 66 | ||||
| 6 | 7800 | 50 | 210 | 18.8 | 6.2 | 6.2 | 18.7 | 5.9 | 3.1 | 33 | 67 | 6.7 | 3.9 | 39 | 61 | ||||
| 7 | 7800 | 50 | 210 | 24.4 | 6.2 | 6.2 | 13.1 | 7.2 | 3.1 | 39 | 61 | 8.0 | 3.7 | 42 | 58 | ||||
| 8 | 7800 | 50 | 210 | 31.3 | 6.2 | 6.2 | 6.3 | 9.3 | 3.2 | 42 | 58 | 9.4 | 3.5 | 45 | 55 | ||||
| 9 | 7800 | 50 | 210 | 37.5 | 6.2 | 6.2 | 0 | 9.9 | 3.4 | 48 | 52 | 10.6 | 3.4 | 48 | 52 | ||||
| 10 | 7800 | 50 | 210 | 24.4 | 12 | 6.2 | 7.4 | 4.8 | 3.9 | 37 | 63 | 4.3 | 3.9 | 41 | 59 | ||||
| 11 | 7800 | 50 | 210 | 24.4 | 8.1 | 6.2 | 11.3 | 6.1 | 3.3 | 38 | 62 | 6.2 | 3.8 | 42 | 58 | ||||
| 12 | 7800 | 50 | 210 | 24.4 | 4.9 | 6.2 | 14.5 | 8.8 | 2.9 | 38 | 62 | 9.8 | 3.7 | 43 | 57 | ||||
| 13 | 7800 | 50 | 210 | 24.4 | 4.1 | 6.2 | 15.3 | 9.8 | 2.7 | 40 | 60 | 11.5 | 3.6 | 43 | 57 | ||||
| 14 | 7800 | 65 | 210 | 31.7 | 8.1 | 8.1 | 17.1 | 8.6 | 4.4 | 48 | 52 | 8.8 | 4.3 | 46 | 54 | ||||
| 15 | 7800 | 80 | 210 | 39 | 10 | 10 | 21 | 9.9 | 5.3 | 51 | 49 | 9.6 | 4.8 | 49 | 51 | ||||
| 16 | 11700 | 50 | 210 | 24.4 | 6.3 | 6.3 | 13.1 | 5.6 | 2.6 | 39 | 61 | 5.8 | 2.8 | 41 | 59 | ||||
| 17 | 23400 | 50 | 210 | 24.4 | 6.3 | 6.3 | 13.1 | 2.8 | 1.4 | 46 | 54 | 3.3 | 1.6 | 41 | 59 | ||||
表6 模拟结果与实验结果对比
| 实验次数 | 反应体积空速(GHSV)/m3·kg-1·h-1 | P/bar | T/℃ | 组分分压/bar | 转换率(实验)/% | 选择性(实验)/% | 转换率(模拟)/% | 选择性(模拟)/% | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| H2 | CO2 | N2 | Ar | CO2 | H2 | CH3OH | CO | CO2 | H2 | CH3OH | CO | ||||||||
| 1 | 7800 | 50 | 200 | 34.9 | 8.9 | 6.2 | 0 | 4 .6 | 2.4 | 56 | 44 | 4.6 | 2.5 | 57 | 43 | ||||
| 2 | 7800 | 50 | 210 | 34.9 | 8.9 | 6.2 | 0 | 7.7 | 3.4 | 45 | 55 | 7.2 | 3.5 | 46 | 54 | ||||
| 3 | 7800 | 50 | 220 | 34.9 | 8.9 | 6.2 | 0 | 11.1 | 4.8 | 43 | 57 | 11.1 | 5.0 | 38 | 62 | ||||
| 4 | 7800 | 50 | 230 | 34.9 | 8.9 | 6.2 | 0 | 15.8 | 6.3 | 38 | 62 | 15.8 | 6.7 | 33 | 67 | ||||
| 5 | 7800 | 50 | 210 | 12.7 | 6.2 | 6.2 | 24.8 | 5.1 | 2.9 | 20 | 80 | 5.2 | 4.3 | 34 | 66 | ||||
| 6 | 7800 | 50 | 210 | 18.8 | 6.2 | 6.2 | 18.7 | 5.9 | 3.1 | 33 | 67 | 6.7 | 3.9 | 39 | 61 | ||||
| 7 | 7800 | 50 | 210 | 24.4 | 6.2 | 6.2 | 13.1 | 7.2 | 3.1 | 39 | 61 | 8.0 | 3.7 | 42 | 58 | ||||
| 8 | 7800 | 50 | 210 | 31.3 | 6.2 | 6.2 | 6.3 | 9.3 | 3.2 | 42 | 58 | 9.4 | 3.5 | 45 | 55 | ||||
| 9 | 7800 | 50 | 210 | 37.5 | 6.2 | 6.2 | 0 | 9.9 | 3.4 | 48 | 52 | 10.6 | 3.4 | 48 | 52 | ||||
| 10 | 7800 | 50 | 210 | 24.4 | 12 | 6.2 | 7.4 | 4.8 | 3.9 | 37 | 63 | 4.3 | 3.9 | 41 | 59 | ||||
| 11 | 7800 | 50 | 210 | 24.4 | 8.1 | 6.2 | 11.3 | 6.1 | 3.3 | 38 | 62 | 6.2 | 3.8 | 42 | 58 | ||||
| 12 | 7800 | 50 | 210 | 24.4 | 4.9 | 6.2 | 14.5 | 8.8 | 2.9 | 38 | 62 | 9.8 | 3.7 | 43 | 57 | ||||
| 13 | 7800 | 50 | 210 | 24.4 | 4.1 | 6.2 | 15.3 | 9.8 | 2.7 | 40 | 60 | 11.5 | 3.6 | 43 | 57 | ||||
| 14 | 7800 | 65 | 210 | 31.7 | 8.1 | 8.1 | 17.1 | 8.6 | 4.4 | 48 | 52 | 8.8 | 4.3 | 46 | 54 | ||||
| 15 | 7800 | 80 | 210 | 39 | 10 | 10 | 21 | 9.9 | 5.3 | 51 | 49 | 9.6 | 4.8 | 49 | 51 | ||||
| 16 | 11700 | 50 | 210 | 24.4 | 6.3 | 6.3 | 13.1 | 5.6 | 2.6 | 39 | 61 | 5.8 | 2.8 | 41 | 59 | ||||
| 17 | 23400 | 50 | 210 | 24.4 | 6.3 | 6.3 | 13.1 | 2.8 | 1.4 | 46 | 54 | 3.3 | 1.6 | 41 | 59 | ||||
| 项目 | 贝叶斯算法 | 进化响应面法 |
|---|---|---|
| 反应器温度/℃ | 247.19 | 237.9 |
| 反应器压力/bar | 112.42 | 120 |
| 闪蒸罐1温度/℃ | 35 | 35 |
| 闪蒸罐1压力/bar | 111.42 | 119 |
| 闪蒸罐2温度/℃ | 39.9 | 35 |
| 闪蒸罐2压力/bar | 1.76 | 1.4 |
| 氢气公用工程用量/kmol·h-1 | 7829.81 | 8034.51 |
| 甲醇产量/kmol·h-1 | 3291.56 | 3295.32 |
| 闪蒸罐1材料成本/CNY | 482114.57 | 494919.77 |
| 年度总效益增量/CNY | 5722022.60 | 7163708.71 |
| 最优点迭代次数 | 272 | 100 |
| 计算时间/s | 5333 | 4507 |
表7 贝叶斯算法与进化响应法结果对比
| 项目 | 贝叶斯算法 | 进化响应面法 |
|---|---|---|
| 反应器温度/℃ | 247.19 | 237.9 |
| 反应器压力/bar | 112.42 | 120 |
| 闪蒸罐1温度/℃ | 35 | 35 |
| 闪蒸罐1压力/bar | 111.42 | 119 |
| 闪蒸罐2温度/℃ | 39.9 | 35 |
| 闪蒸罐2压力/bar | 1.76 | 1.4 |
| 氢气公用工程用量/kmol·h-1 | 7829.81 | 8034.51 |
| 甲醇产量/kmol·h-1 | 3291.56 | 3295.32 |
| 闪蒸罐1材料成本/CNY | 482114.57 | 494919.77 |
| 年度总效益增量/CNY | 5722022.60 | 7163708.71 |
| 最优点迭代次数 | 272 | 100 |
| 计算时间/s | 5333 | 4507 |
| [1] | International Energy Agency. Global hydrogen review 2024[R/OL]. (2024-10-02)[2024-11-22].. |
| [2] | International Energy Agency. CO2 emissions in 2022[R/OL]. (2023-03-02)[2024-11-22].. |
| [3] | 杨学萍. 碳中和背景下现代煤化工技术路径探索[J].化工进展, 2022, 41(7): 3402-3412. |
| YANG Xueping. Exploration on technical path of modern coal chemical industry under the background of carbon neutralization[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3402-3412. | |
| [4] | 王江涛, 鹿晓斌. CO2促进“甲醇经济”与“氢经济”共同发展[J]. 现代化工, 2021, 41(7): 14-18, 25. |
| WANG Jiangtao, LU Xiaobin. Together development of “methanol economy” and “hydrogen economy” driven by CO2 utilization[J]. Modern Chemical Industry, 2021, 41(7): 14-18, 25. | |
| [5] | AN Xin, ZUO Yizan, ZHANG Qiang, et al. Methanol synthesis from CO2 hydrogenation with a Cu/Zn/Al/Zr fibrous catalyst[J]. Chinese Journal of Chemical Engineering, 2009, 17(1): 88-94. |
| [6] | PORTHA Jean-François, PARKHOMENKO Ksenia, KOBL Kilian, et al. Kinetics of methanol synthesis from carbon dioxide hydrogenation over copper-zinc oxide catalysts[J]. Industrial & Engineering Chemistry Research, 2017, 56(45): 13133-13145. |
| [7] | KISS Anton A, PRAGT J J, VOS H J, et al. Novel efficient process for methanol synthesis by CO2 hydrogenation[J]. Chemical Engineering Journal, 2016, 284: 260-269. |
| [8] | YANG Minbo, ZENG Siying, FENG Xiao, et al. Simulation-based modeling and optimization for refinery hydrogen network integration with light hydrocarbon recovery[J]. International Journal of Hydrogen Energy, 2022, 47(7): 4662-4673. |
| [9] | HUANG Lingjun, HONG Xiaodong, LIAO Zuwei, et al. Efficient hybrid strategy for simultaneous design of refinery hydrogen networks and pressure swing adsorption unit[J]. Journal of Cleaner Production, 2024, 466: 142858. |
| [10] | CONN Andrew R, LE DIGABEL Sébastien. Use of quadratic models with mesh-adaptive direct search for constrained black box optimization[J]. Optimization Methods and Software, 2013, 28(1): 139-158. |
| [11] | BOUKOUVALA Fani, IERAPETRITOU Marianthi G. Surrogate-based optimization of expensive flowsheet modeling for continuous pharmaceutical manufacturing[J]. Journal of Pharmaceutical Innovation, 2013, 8(2): 131-145. |
| [12] | REGIS Rommel G. Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[J]. Engineering Optimization, 2014, 46(2): 218-243. |
| [13] | FORRESTER Alexander, JONES Donald. Global optimization of deceptive functions with sparse sampling[C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Victoria, British Columbia, Canada: AIAA, 2008. |
| [14] | REGIS Rommel G, SHOEMAKER Christine A. A quasi-multistart framework for global optimization of expensive functions using response surface models[J]. Journal of Global Optimization, 2013, 56(4): 1719-1753. |
| [15] | 吴依凡, 夏志鹏, 吉旭, 等. 基于代理模型的炼厂氢网络与脱硫系统同步优化[J]. 华东理工大学学报(自然科学版), 2023, 49(2): 176-187. |
| WU Yifan, XIA Zhipeng, JI Xu, et al. Surrogate-assisted refinery hydrogen network optimization with hydrogen sulfide removal[J]. Journal of East China University of Science and Technology, 2023, 49(2): 176-187. | |
| [16] | MARTELLI Emanuele, AMALDI Edoardo, CONSONNI Stefano. Numerical optimization of heat recovery steam cycles: Mathematical model, two-stage algorithm and applications[J]. Computers & Chemical Engineering, 2011, 35(12): 2799-2823. |
| [17] | ABRAMSON Mark A, AUDET Charles. Convergence of mesh adaptive direct search to second-order stationary points[J]. SIAM Journal on Optimization, 2006, 17(2): 606-619. |
| [18] | GRAAF G H, SCHOLTENS H, STAMHUIS E J, et al. Intra-particle diffusion limitations in low-pressure methanol synthesis[J]. Chemical Engineering Science, 1990, 45(4): 773-783. |
| [19] | GRAAF G H, SIJTSEMA P J J M, STAMHUIS E J, et al. Chemical equilibria in methanol synthesis[J]. Chemical Engineering Science, 1986, 41(11): 2883-2890. |
| [20] | LUYBEN William L. Design and control of a methanol reactor/column process[J]. Industrial & Engineering Chemistry Research, 2010, 49(13): 6150-6163. |
| [21] | ALVES Joao J, TOWLER Gavin P. Analysis of refinery hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research, 2002, 41(23): 5759-5769. |
| [1] | 吴博, 马琳萱, 张明峰, 曹丽娟, 周蕾, 王学重. 基于机器学习的超声衰减预测水滑石粒度分布[J]. 化工进展, 2025, 44(8): 4365-4374. |
| [2] | 赵用明, 卜亿峰, 王涛, 杜冰, 门卓武. 费托合成催化剂动态置换与稳态工艺的集成优化[J]. 化工进展, 2025, 44(8): 4536-4544. |
| [3] | 杨傲, 邓苇, 黎勇, 罗婧, 王梓霖, 张俊, 申威峰. 基于热力学拓扑理论的三塔变压精馏分离四氢呋喃/甲醇/乙醇多目标优化设计[J]. 化工进展, 2025, 44(8): 4582-4593. |
| [4] | 董丰莲, 李鹏, 魏志伟, 孙鑫, 徐赫锴, 何畅. 考虑原油采购选择的混炼加工优化[J]. 化工进展, 2025, 44(8): 4648-4656. |
| [5] | 杨嘉聪, 程光旭, 贾彤华, 姜召. 煤制甲醇与绿氢高效耦合新工艺模拟及技术经济分析[J]. 化工进展, 2025, 44(8): 4657-4668. |
| [6] | 贾子葶, 崔子元, 王彧斐. 规整化柔性厂区布局优化策略[J]. 化工进展, 2025, 44(8): 4669-4679. |
| [7] | 黄旭昆, 葛纪军, 徐盼, 毕荣山, 李国选. 聚芳酯多级逆流水洗过程的模拟与优化[J]. 化工进展, 2025, 44(8): 4680-4687. |
| [8] | 叶晓生, 袁婷, 贾鑫, 任庆霞. 多元复合纳米材料去除微囊藻毒素-LR研究进展[J]. 化工进展, 2025, 44(7): 4144-4157. |
| [9] | 于宁, 王秋月, 王志才, 高子怡, 柴永明, 董斌. 双位点协同调控增强钙钛矿氧化物的水氧化活性[J]. 化工进展, 2025, 44(7): 3976-3984. |
| [10] | 姚如伟, 宋乐音, 牛琴琴, 李聪明. Na-S双助剂修饰铁基催化剂催化CO2加氢制C2+醇[J]. 化工进展, 2025, 44(6): 3154-3162. |
| [11] | 李明, 周依, 南兰, 叶晓生. 自动优化连续合成研究进展[J]. 化工进展, 2025, 44(6): 3190-3198. |
| [12] | 周鹏辉, 曾琳, 代黎, 冯小波, 倪笛. 响应面法和熵权法对离心风机的多目标性能优化[J]. 化工进展, 2025, 44(6): 3271-3279. |
| [13] | 郑慧哲, 王浩泽, 蒋杰, 赵玲, 奚桢浩. 反应与传质耦合的PCTG共聚酯圆盘反应器建模与模拟[J]. 化工进展, 2025, 44(6): 3372-3381. |
| [14] | 单灵海, 段欢欢, 郑旭铭, 黄晓璜, 崔国民. 一种新的换热单元竞争强化策略优化换热网络[J]. 化工进展, 2025, 44(6): 3393-3404. |
| [15] | 李红伟, 许涵侨, 赵燕, 刘耀宗, 滕志君, 季东, 李贵贤. 铂基催化剂电催化甲醇氧化研究进展与展望[J]. 化工进展, 2025, 44(6): 3443-3456. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |