化工进展 ›› 2025, Vol. 44 ›› Issue (8): 4628-4647.DOI: 10.16085/j.issn.1000-6613.2024-1624
• 过程系统工程的模拟与仿真 • 上一篇
英全生命周期预测模型的构建:耦合数值仿真和模糊森林回归的方法
汤健1,2(
), 崔旺旺1,2, 陈佳昆1,2, 王天峥1,2, 乔俊飞1,2
收稿日期:2024-10-10
修回日期:2024-11-15
出版日期:2025-08-25
发布日期:2025-09-08
通讯作者:
汤健
作者简介:汤健(1974—),男,教授,博士生导师,研究方向为固废焚烧智能控制。E-mail:freeflytang@bjut.edu.cn。
基金资助:
TANG Jian1,2(
), CUI Wangwang1,2, CHEN Jiakun1,2, WANG Tianzheng1,2, QIAO Junfei1,2
Received:2024-10-10
Revised:2024-11-15
Online:2025-08-25
Published:2025-09-08
Contact:
TANG Jian
摘要:
城市固废焚烧(MSWI)是实现废弃物管理和能源回收的关键技术之一,该过程不可避免地产生持久性有机污染物二
英(DXN)。该污染物产生机理至今模糊不清且难以直接检测。为洞悉DXN生成、分解、再生成、吸附和排放的全生命周期机理,本文提出了基于耦合数值仿真和模糊森林回归的DXN全生命周期模型构建方法。首先,采用FLIC、Aspen Plus和Aspen Adsorption开发DXN全生命周期数值仿真模型。随后,进行双正交实验设计与实施以获得多工况下虚拟机理数据。最后,利用T-S模糊森林回归算法(TSFFR)建立DXN全生命周期模型。结果表明,该模型能够获取MSWI过程DXN全生命周期不同位置的浓度,为后续实现污染减排与优化控制提供了有效支撑。
中图分类号:
汤健, 崔旺旺, 陈佳昆, 王天峥, 乔俊飞. 城市固废焚烧过程二
英全生命周期预测模型的构建:耦合数值仿真和模糊森林回归的方法[J]. 化工进展, 2025, 44(8): 4628-4647.
TANG Jian, CUI Wangwang, CHEN Jiakun, WANG Tianzheng, QIAO Junfei. Full lifecycle prediction model construction for dioxins in municipal solid waste incineration process: Method of coupling numerical simulation and fuzzy forest regression[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4628-4647.
| 事项 | 所用方法 |
|---|---|
| 离散化方法 | 一阶迎风差分 |
| 节点数 | 20 |
| 物料平衡 | 仅对流 |
| 动量平衡 | Kaman-Kozeny方程 |
| 能量平衡 | 等温 |
| 动力学模型 | 线性集总阻力 |
| 传质系数 | 常数 |
| 等温线 | 朗缪尔Ⅰ型 |
表1 吸附模型理论假设
| 事项 | 所用方法 |
|---|---|
| 离散化方法 | 一阶迎风差分 |
| 节点数 | 20 |
| 物料平衡 | 仅对流 |
| 动量平衡 | Kaman-Kozeny方程 |
| 能量平衡 | 等温 |
| 动力学模型 | 线性集总阻力 |
| 传质系数 | 常数 |
| 等温线 | 朗缪尔Ⅰ型 |
| 参数 | 数值 |
|---|---|
| 额定处理量/t·d-1 | 800 |
| 实际处理量/t·d-1 | 624 |
| 炉排类型 | — |
| 炉排长×宽/m | 11×12.9 |
| 炉排速度/m·h-1 | 8 |
| 一次风流量(标准状况)/m3·h-1 | 65400 |
| 二次风流量(标准状况)/m3·h-1 | 7500 |
| 一次风温度/℃ | 200 |
| 一次风分布/% | 24.31、43.35、19.27、13.07 |
表2 焚烧炉的规格和基准工况运行参数
| 参数 | 数值 |
|---|---|
| 额定处理量/t·d-1 | 800 |
| 实际处理量/t·d-1 | 624 |
| 炉排类型 | — |
| 炉排长×宽/m | 11×12.9 |
| 炉排速度/m·h-1 | 8 |
| 一次风流量(标准状况)/m3·h-1 | 65400 |
| 二次风流量(标准状况)/m3·h-1 | 7500 |
| 一次风温度/℃ | 200 |
| 一次风分布/% | 24.31、43.35、19.27、13.07 |
| 工业分析(收到基) | 质量分数/% | 元素分析(干燥基) | 质量分数/% |
|---|---|---|---|
| 水分 | 38.48 | C | 50.55 |
| 挥发分 | 41.80 | H | 7.79 |
| 固定碳 | 6.56 | O | 18.80 |
| 灰分 | 13.16 | N | 0.40 |
| S | 0.27 | ||
| Cl | 0.79 |
表3 MSW属性参数
| 工业分析(收到基) | 质量分数/% | 元素分析(干燥基) | 质量分数/% |
|---|---|---|---|
| 水分 | 38.48 | C | 50.55 |
| 挥发分 | 41.80 | H | 7.79 |
| 固定碳 | 6.56 | O | 18.80 |
| 灰分 | 13.16 | N | 0.40 |
| S | 0.27 | ||
| Cl | 0.79 |
| 软件 | 参数 | 数值 |
|---|---|---|
| FLIC | 炉排速度/m·h-1 | 7.5 |
| FLIC和Aspen Plus | 进料量/t·d-1 | 624 |
| 一次风量(标准状况)/m3·h-1 | 65400 | |
| 一次风温度/℃ | 200 | |
| Aspen Plus | 二次风量(标准状况)/m3·h-1 | 7500 |
| 二次风温度/℃ | 25 | |
| 活性炭/kg·h-1 | 17 | |
| 气体组分 | 见 | |
| DXN脱除率 | 见 | |
| Aspen Adsorption | 烟气温度/℃ | 170 |
| 吸附剂粒径/mm | 1.05 | |
| 吸附剂密度/kg·m-3 | 450 | |
| 吸附床半径/m | 0.35 | |
| 吸附床高度/m | 0.01 |
表4 数值仿真软件输入参数
| 软件 | 参数 | 数值 |
|---|---|---|
| FLIC | 炉排速度/m·h-1 | 7.5 |
| FLIC和Aspen Plus | 进料量/t·d-1 | 624 |
| 一次风量(标准状况)/m3·h-1 | 65400 | |
| 一次风温度/℃ | 200 | |
| Aspen Plus | 二次风量(标准状况)/m3·h-1 | 7500 |
| 二次风温度/℃ | 25 | |
| 活性炭/kg·h-1 | 17 | |
| 气体组分 | 见 | |
| DXN脱除率 | 见 | |
| Aspen Adsorption | 烟气温度/℃ | 170 |
| 吸附剂粒径/mm | 1.05 | |
| 吸附剂密度/kg·m-3 | 450 | |
| 吸附床半径/m | 0.35 | |
| 吸附床高度/m | 0.01 |
| 气体组分 | 摩尔分数/% | 气体组分 | 摩尔分数/% |
|---|---|---|---|
| CH4 | 0.01017 | CO | 0.03022 |
| CO2 | 0.06831 | O2 | 0.07710 |
| N2 | 0.49617 | H2O | 0.29350 |
| H2 | 0.01956 | NO2 | 8.96×10-6 |
表5 床层上方的混合气体组分
| 气体组分 | 摩尔分数/% | 气体组分 | 摩尔分数/% |
|---|---|---|---|
| CH4 | 0.01017 | CO | 0.03022 |
| CO2 | 0.06831 | O2 | 0.07710 |
| N2 | 0.49617 | H2O | 0.29350 |
| H2 | 0.01956 | NO2 | 8.96×10-6 |
| 因素 | 5个区域水平值 |
|---|---|
| 炉排速度/m·h-1 | 7,7.5,8,8.5,9 |
| 进料量/t·h-1 | 24.2,24.7,25.2,25.7,26.2 |
| 干燥段一次风量(标准状况)/m3·min-1 | 268,274,280,286,292 |
| 燃烧1段一次风量(标准状况)/m3·min-1 | 477,488,499,510,521 |
| 燃烧2段一次风量(标准状况)/m3·min-1 | 211,216,221,226,231 |
| 燃烬段一次风量(标准状况)/m3·min-1 | 144,147,150,153,156 |
| 粒径/mm | 15,20,25,30,35 |
| 颗粒混合系数 | 2×10-6,3×10-6,4×10-6,5×10-6,6×10-6 |
| 含水量/% | 48,49.75,51.5,53.25,55 |
| C∶O | 58∶33,59∶32,60∶31,61∶30,62∶29 |
表6 第1阶段正交实验设置
| 因素 | 5个区域水平值 |
|---|---|
| 炉排速度/m·h-1 | 7,7.5,8,8.5,9 |
| 进料量/t·h-1 | 24.2,24.7,25.2,25.7,26.2 |
| 干燥段一次风量(标准状况)/m3·min-1 | 268,274,280,286,292 |
| 燃烧1段一次风量(标准状况)/m3·min-1 | 477,488,499,510,521 |
| 燃烧2段一次风量(标准状况)/m3·min-1 | 211,216,221,226,231 |
| 燃烬段一次风量(标准状况)/m3·min-1 | 144,147,150,153,156 |
| 粒径/mm | 15,20,25,30,35 |
| 颗粒混合系数 | 2×10-6,3×10-6,4×10-6,5×10-6,6×10-6 |
| 含水量/% | 48,49.75,51.5,53.25,55 |
| C∶O | 58∶33,59∶32,60∶31,61∶30,62∶29 |
| 因素 | 5个区域水平值 | 因素 | 5个区域水平值 |
|---|---|---|---|
| 炉排速度/m·h-1 | 6.6,6.7,6.8,6.9,7.0 | 进料量/t·h-1 | 24.2,24.3,24.4,24.5,24.6 |
| 7.1,7.2,7.3,7.4,7.5 | 24.7,27.8,24.9,25.0,25.1 | ||
| 7.6,7.7,7.8,7.9,8.0 | 25.2,25.3,25.4,25.5,25.6 | ||
| 8.1,8.2,8.3,8.4,8.5 | 25.7,25.8,25.9,26.0,26.1 | ||
| 8.6,8.7,8.8,8.9,9.0 | 26.2,26.3,26.4,26.5,26.6 | ||
| 干燥段风量(标准状况)/m3·min-1 | 255.0,256.8,258.6,260.4,262.2 | 燃烧1段风量(标准状况)/m3·min-1 | 455.0,458.2,461.4,464.6,467.8 |
| 264.0,265.8,267.6,269.4,271.2 | 471.0,474.2,477.4,480.6,483.8 | ||
| 273.0,274.8,276.6,278.4,280.2 | 487.0,490.2,493.4,496.6,499.8 | ||
| 282.0,283.8,285.6,287.4,289.2 | 503.0,506.2,509.0,513.0,515.8 | ||
| 291.0,292.8,294.6,296.4,298.2 | 519.0,522.2,525.4,528.6,531.8 | ||
| 燃烧2段风量(标准状况)/m3·min-1 | 203.0,204.4,205.8,207.2,208.6 | 燃烬段风量(标准状况)/m3·min-1 | 137,138,139,140,141 |
| 210.0,211.4,212.8,214.2,215.6 | 142,143,144,145,146 | ||
| 217.0,218.4,219.8,221.2,222.6 | 147,148,149,150,151 | ||
| 224.0,225.4,227.0,228.0,229.6 | 152,153,154,155,156 | ||
| 231.0,232.4,233.8,235.2,236.6 | 157,158,159,160,161 |
表7 第2阶段正交实验设置
| 因素 | 5个区域水平值 | 因素 | 5个区域水平值 |
|---|---|---|---|
| 炉排速度/m·h-1 | 6.6,6.7,6.8,6.9,7.0 | 进料量/t·h-1 | 24.2,24.3,24.4,24.5,24.6 |
| 7.1,7.2,7.3,7.4,7.5 | 24.7,27.8,24.9,25.0,25.1 | ||
| 7.6,7.7,7.8,7.9,8.0 | 25.2,25.3,25.4,25.5,25.6 | ||
| 8.1,8.2,8.3,8.4,8.5 | 25.7,25.8,25.9,26.0,26.1 | ||
| 8.6,8.7,8.8,8.9,9.0 | 26.2,26.3,26.4,26.5,26.6 | ||
| 干燥段风量(标准状况)/m3·min-1 | 255.0,256.8,258.6,260.4,262.2 | 燃烧1段风量(标准状况)/m3·min-1 | 455.0,458.2,461.4,464.6,467.8 |
| 264.0,265.8,267.6,269.4,271.2 | 471.0,474.2,477.4,480.6,483.8 | ||
| 273.0,274.8,276.6,278.4,280.2 | 487.0,490.2,493.4,496.6,499.8 | ||
| 282.0,283.8,285.6,287.4,289.2 | 503.0,506.2,509.0,513.0,515.8 | ||
| 291.0,292.8,294.6,296.4,298.2 | 519.0,522.2,525.4,528.6,531.8 | ||
| 燃烧2段风量(标准状况)/m3·min-1 | 203.0,204.4,205.8,207.2,208.6 | 燃烬段风量(标准状况)/m3·min-1 | 137,138,139,140,141 |
| 210.0,211.4,212.8,214.2,215.6 | 142,143,144,145,146 | ||
| 217.0,218.4,219.8,221.2,222.6 | 147,148,149,150,151 | ||
| 224.0,225.4,227.0,228.0,229.6 | 152,153,154,155,156 | ||
| 231.0,232.4,233.8,235.2,236.6 | 157,158,159,160,161 |
| 指标 | 方法 | 训练集 | 验证集 | 测试集 |
|---|---|---|---|---|
| RMSE | DT | 2.31×10-2±6.55×10-7 | 2.65×10-2±1.21×10-6 | 2.57×10-2±1.25×10-6 |
| RF | 1.65×10-2±3.31×10-8 | 2.36×10-2±5.57×10-9 | 2.25×10-2±5.37×10-9 | |
| DFR | 1.35×10-2±2.27×10-8 | 2.09×10-2±7.63×10-9 | 2.19×10-2±1.31×10-8 | |
| BPNN | 2.34×10-2±4.76×10-6 | 2.44×10-2±5.24×10-6 | 2.38×10-2±5.74×10-6 | |
| TSFFR | 1.87×10-2±7.75×10-7 | 2.29×10-2±3.82×10-7 | 2.23×10-2±3.28×10-7 | |
| MAE | DT | 1.78×10-2±4.20×10-7 | 2.10×10-2±8.20×10-7 | 2.04×10-2±7.91×10-7 |
| RF | 1.29×10-2±2.15×10-8 | 1.92×10-2±4.13×10-9 | 1.83×10-2±6.57×10-9 | |
| DFR | 1.05×10-2±1.66×10-8 | 1.67×10-2±7.48×10-9 | 1.73×10-2±1.21×10-8 | |
| BPNN | 1.86×10-2±3.24×10-6 | 1.95×10-2±3.40×10-6 | 1.91×10-2±3.52×10-6 | |
| TSFFR | 1.47×10-2±4.84×10-7 | 1.84×10-2±1.60×10-7 | 1.77×10-2±1.31×10-7 |
表8 RMSE和MAE统计结果
| 指标 | 方法 | 训练集 | 验证集 | 测试集 |
|---|---|---|---|---|
| RMSE | DT | 2.31×10-2±6.55×10-7 | 2.65×10-2±1.21×10-6 | 2.57×10-2±1.25×10-6 |
| RF | 1.65×10-2±3.31×10-8 | 2.36×10-2±5.57×10-9 | 2.25×10-2±5.37×10-9 | |
| DFR | 1.35×10-2±2.27×10-8 | 2.09×10-2±7.63×10-9 | 2.19×10-2±1.31×10-8 | |
| BPNN | 2.34×10-2±4.76×10-6 | 2.44×10-2±5.24×10-6 | 2.38×10-2±5.74×10-6 | |
| TSFFR | 1.87×10-2±7.75×10-7 | 2.29×10-2±3.82×10-7 | 2.23×10-2±3.28×10-7 | |
| MAE | DT | 1.78×10-2±4.20×10-7 | 2.10×10-2±8.20×10-7 | 2.04×10-2±7.91×10-7 |
| RF | 1.29×10-2±2.15×10-8 | 1.92×10-2±4.13×10-9 | 1.83×10-2±6.57×10-9 | |
| DFR | 1.05×10-2±1.66×10-8 | 1.67×10-2±7.48×10-9 | 1.73×10-2±1.21×10-8 | |
| BPNN | 1.86×10-2±3.24×10-6 | 1.95×10-2±3.40×10-6 | 1.91×10-2±3.52×10-6 | |
| TSFFR | 1.47×10-2±4.84×10-7 | 1.84×10-2±1.60×10-7 | 1.77×10-2±1.31×10-7 |
| 参数 | GSC | GGC | GHT | GLT | GGE |
|---|---|---|---|---|---|
| 进料量 | 增大 | 增大 | 先增大后减小 | 先减小后增大再减小 | 减小 |
| 炉排速度 | 增大 | 增大 | 先增大后减小 | 增大 | 先减小后增大 |
| 一次风量 | 增大 | 增大 | 先增大后减小 | 先减小后增大再减小 | 增大 |
| 含水量 | 增大 | 增大 | 先减小后增大 | 增大 | 增大 |
| 颗粒混合系数 | 增大 | 先减小后增大 | 增大 | 先减小后增大再减小 | 增大 |
| 粒径 | 增大 | 先增大后减小 | 增大 | 先增大后减小再增大 | 先减小后增大 |
表9 输入变量对DXN浓度的影响
| 参数 | GSC | GGC | GHT | GLT | GGE |
|---|---|---|---|---|---|
| 进料量 | 增大 | 增大 | 先增大后减小 | 先减小后增大再减小 | 减小 |
| 炉排速度 | 增大 | 增大 | 先增大后减小 | 增大 | 先减小后增大 |
| 一次风量 | 增大 | 增大 | 先增大后减小 | 先减小后增大再减小 | 增大 |
| 含水量 | 增大 | 增大 | 先减小后增大 | 增大 | 增大 |
| 颗粒混合系数 | 增大 | 先减小后增大 | 增大 | 先减小后增大再减小 | 增大 |
| 粒径 | 增大 | 先增大后减小 | 增大 | 先增大后减小再增大 | 先减小后增大 |
| [1] | SHAH Anil V, SRIVASTAVA Vijay Kumar, MOHANTY Swayansu Sabyasachi, et al. Municipal solid waste as a sustainable resource for energy production: State-of-the-art review[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105717. |
| [2] | 汤健, 夏恒, 余文, 等. 城市固废焚烧过程智能优化控制研究现状与展望[J]. 自动化学报, 2023, 49(10): 2019-2059. |
| TANG Jian, XIA Heng, YU Wen, et al. Research status and prospects of intelligent optimization control for municipal solid waste incineration process[J]. Acta Automatica Sinica, 2023, 49(10): 2019-2059. | |
| [3] | 乔俊飞, 郭子豪, 汤健. 面向城市固废焚烧过程的二𫫇英排放浓度检测方法综述[J]. 自动化学报, 2020, 46(6): 1063-1089. |
| QIAO Junfei, GUO Zihao, TANG Jian. Dioxin emission concentration measurement approaches for municipal solid wastes incineration process: A survey[J]. Acta Automatica Sinica, 2020, 46(6): 1063-1089. | |
| [4] | ALTARAWNEH Mohammednoor, DLUGOGORSKI Bogdan Z, KENNEDY Eric M, et al. Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs)[J]. Progress in Energy and Combustion Science, 2009, 35(3): 245-274. |
| [5] | ZHUANG Jiabin, TANG Jian, ALJERF Loai. Comprehensive review on mechanism analysis and numerical simulation of municipal solid waste incineration process based on mechanical grate[J]. Fuel, 2022, 320: 123826. |
| [6] | YANG Y B, GOH Y R, ZAKARIA R, et al. Mathematical modelling of MSW incineration on a travelling bed[J]. Waste Management, 2002, 22(4): 369-380. |
| [7] | ISMAIL T M, EL-SALAM M ABD, EL-KADY M A, et al. Three dimensional model of transport and chemical late phenomena on a MSW incinerator[J]. International Journal of Thermal Sciences, 2014, 77: 139-157. |
| [8] | YAN Mi, TIAN Xinyi, ANTONI, et al. Influence of multi-temperature primary air on the characteristics of MSW combustion in a moving grate incinerator[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106690. |
| [9] | SUN Yong, QIN Zhen, TANG Yuting, et al. Techno-environmental-economic assessment on municipal solid waste to methanol coupling with/without solid oxygen electrolysis cell unit[J]. Process Safety and Environmental Protection, 2022, 161: 611-628. |
| [10] | TULAPHOL Sarttrawut, BUNSAN Sond, CHEN Ho Wen, et al. Capture of dioxin derivatives on activated carbons: Breakthrough curve modelling and isotherm parameters[J]. International Journal of Environment and Pollution, 2016, 60(1/2/3/4): 156. |
| [11] | BUNSAN Sond, CHEN Wei-Yea, CHEN Ho-Wen, et al. Modeling the dioxin emission of a municipal solid waste incinerator using neural networks[J]. Chemosphere, 2013, 92(3): 258-264. |
| [12] | CHEN Ken, PENG Yaqi, LU Shengyong, et al. Bagging based ensemble learning approaches for modeling the emission of PCDD/Fs from municipal solid waste incinerators[J]. Chemosphere, 2021, 274: 129802. |
| [13] | XIONG Shijian, PENG Yaqi, LU Shengyong, et al. Generalized prediction and optimal operating parameters of PCDD/F emissions by explainable Bayesian support vector regression[J]. Waste Management, 2021, 135: 437-447. |
| [14] | XIA Heng, TANG Jian, YU Wen, et al. Takagi Sugeno fuzzy regression trees with application to complex industrial modeling[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(7): 2210-2224. |
| [15] | 应雨轩, 林晓青, 吴昂键, 等. 生活垃圾智慧焚烧的研究现状及展望[J]. 化工学报, 2021, 72(2): 886-900. |
| YING Yuxuan, LIN Xiaoqing, WU Angjian, et al. Review and outlook on municipal solid waste smart incineration[J]. CIESC Journal, 2021, 72(2): 886-900. | |
| [16] | WEI Junxiao, LI Huan, LIU Jianguo. Fate of dioxins in a municipal solid waste incinerator with state-of-the-art air pollution control devices in China[J]. Environmental Pollution, 2021, 289: 117798. |
| [17] | 郭子豪. 面向城市固废焚烧过程的二𫫇英排放浓度软测量[D]. 北京: 北京工业大学, 2020. |
| GUO Zihao. Soft sensing of dioxin emission concentration for municipal solid waste incineration process[D]. Beijing: Beijing University of Technology, 2020. | |
| [18] | 陈怀俊, 牛芳, 王乃继. 垃圾焚烧处置中二𫫇英和重金属污染控制技术进展[J]. 洁净煤技术, 2021, 27(6): 59-75. |
| CHEN Huaijun, NIU Fang, WANG Naiji. Research progress of dioxins and heavy metal pollution control technology in MSWI[J]. Clean Coal Technology, 2021, 27(6): 59-75. | |
| [19] | ZHONG Rigang, CAI Jianjun, YAN Feng, et al. Process tracing and partitioning behaviors of PCDD/Fs in the post-combustion zone from a full-scale municipal solid waste incinerator in Southern China[J]. Environmental Technology & Innovation, 2021, 23: 101789. |
| [20] | PENG Yaqi, CHEN Jinghao, LU Shengyong, et al. Chlorophenols in municipal solid waste incineration: A review[J]. Chemical Engineering Journal, 2016, 292: 398-414. |
| [21] | ZHANG Sheng, CHEN Zhiliang, LIN Xiaoqing, et al. Kinetics and fusion characteristics of municipal solid waste incineration fly ash during thermal treatment[J]. Fuel, 2020, 279: 118410. |
| [22] | BUEKENS Alfons, ZHANG Mengmei. De novo synthesis of dioxins: A review[J]. International Journal of Environment and Pollution, 2016, 60(1/2/3/4): 63. |
| [23] | LOMNICKI Slawomir, DELLINGER Barry. A detailed mechanism of the surface-mediated formation of PCDD/F from the oxidation of 2-chlorophenol on a CuO/silica surface[J]. Journal of Physical Chemistry A, 2003, 107(22): 4387-4395. |
| [24] | YANG Y B, YAMAUCHI H, NASSERZADEH V, et al. Effects of fuel devolatilisation on the combustion of wood chips and incineration of simulated municipal solid wastes in a packed bed[J]. Fuel, 2003, 82(18): 2205-2221. |
| [25] | SMOOT L D, PRATT D T. Pulverized-coal combustion and gasification: Theory and applications for continuous flow processes [M]. New York: Springer, 2013. |
| [26] | YANG YAO bin, SHARIFI Vida N, SWITHENBANK Jim. Converting moving-grate incineration from combustion to gasification Numerical simulation of the burning characteristics[J]. Waste Management, 2007, 27(5): 645-655. |
| [27] | HOWARD J B, WILLIAMS G C, FINE D H. Kinetics of carbon monoxide oxidation in postflame gases[J]. Symposium (International) on Combustion, 1973, 14(1): 975-986. |
| [28] | HUNT M L, TIEN C L. Non-darcian convection in cylindrical packed beds[J]. Journal of Heat Transfer, 1988, 110(2): 378-384. |
| [29] | VAFAI Kambiz, SOZEN Mehmet. Analysis of energy and momentum transport for fluid flow through a porous bed[J]. Journal of Heat Transfer, 1990, 112(3): 690-699. |
| [30] | ARTHUR J R. Reactions between carbon and oxygen[J]. Transactions of the Faraday Society, 1951, 47: 164-178. |
| [31] | CHEN Jiakun, TANG Jian, XIA Heng, et al. A non-manipulated variable sensitivity analysis of solid-phase combustion in the furnace of municipal solid-waste incineration process based on the biorthogonal double orthogonal numerical simulation experiment[J]. Sustainability, 2023, 15(19): 14159. |
| [32] | MORI Kozo, MATSUI Hisaji, YAMAGUCHI Naoki, et al. Multi-component behavior of fixed-bed adsorption of dioxins by activated carbon fiber[J]. Chemosphere, 2005, 61(7): 941-946. |
| [33] | ZHOU Xujian, LI Xiaodong, NI Mingjiang, et al. Removal efficiencies for 136 tetra- through octa-chlorinated dibenzo-p-dioxins and dibenzofuran congeners with activated carbons[J]. Environmental Science and Pollution Research, 2015, 22(22): 17691-17696. |
| [1] | 梁永琪, 汤健, 夏恒, 陈佳昆, 乔俊飞. 基于耦合数值仿真的基准工况下焚烧炉内颗粒物浓度建模与分析[J]. 化工进展, 2024, 43(S1): 106-120. |
| [2] | 孔祥蕊, 董玥岑, 张蒙雨, 王彪, 尹水娥, 陈冰, 陆家纬, 张媛, 冯乐乐, 王洪涛, 徐海云. 生活垃圾焚烧飞灰处理技术研究进展[J]. 化工进展, 2024, 43(7): 4102-4117. |
| [3] | 陈佳昆, 汤健, 夏恒, 乔俊飞. 城市固废炉排炉焚烧过程二𫫇英排放浓度数值仿真[J]. 化工进展, 2023, 42(2): 1061-1072. |
| [4] | 龙红明, 丁龙, 钱立新, 春铁军, 张洪亮, 余正伟. 烧结烟气中NO x 和二 英的减排现状及发展趋势[J]. 化工进展, 2022, 41(7): 3865-3876. |
| [5] | 章骅,杨瑞,邵立明,何品晶. 二 恶英生成抑制剂及其阻滞机理研究现状与展望[J]. 化工进展, 2020, 39(4): 1485-1492. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |