| [1] |
ZHANG Jingjing, ZHAO Huaping, LI Jun, et al. In situ encapsulation of iron complex nanoparticles into biomass-derived heteroatom-enriched carbon nanotubes for high-performance supercapacitors[J]. Advanced Energy Materials, 2019, 9(4): 1803221.
|
| [2] |
邓秀春, 卓祖优, 白小杰, 等. 银耳菌糠衍生的三维多级孔炭及其电化学应用性能[J]. 化工进展, 2021, 40(10): 5642-5651.
|
|
DENG Xiuchun, ZHUO Zuyou, BAI Xiaojie, et al. Three-dimensional hierarchical porous carbon derived from spent culture substrate of white fungus and its electrochemical application[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5642-5651.
|
| [3] |
牛婷婷, 毛喜玲, 闫欣雨, 等. 三维纳米花NiCo-MOF非对称超级电容器储能特性 [J]. 微纳电子技术: 2024, 61(1): 1-10.
|
|
NIU tingting, MAO Xiling, YAN Xinyu, et al. Energy storage characteristics of three-dimensional nanoflower NiCo-MOF asymmetric supercapacitors[J]. Micronanoelectronics Technology, 2024, 61(1): 1-10.
|
| [4] |
杨旋, 郑新宇, 吕建华, 等. 碱/尿素溶解体系制备氮掺杂活性炭及其电化学性能研究[J]. 林产化学与工业, 2021, 41(2): 10-16.
|
|
YANG Xuan, ZHENG Xinyu, Jianhua LYU, et al. Preparation of nitrogen-doped activated carbon from alkali/urea dissolution system and its electrochemical properties[J]. Chemistry and Industry of Forest Products, 2021, 41(2): 10-16.
|
| [5] |
PAN Zhenghui, ZHONG Jun, ZHANG Qichong, et al. Ultrafast all-solid-state coaxial asymmetric fiber supercapacitors with a high volumetric energy density[J]. Advanced Energy Materials, 2018, 8(14): 1702946.
|
| [6] |
ZHU Qiancheng, ZHAO Danyang, CHENG Mingyu, et al. A new view of supercapacitors: Integrated supercapacitors[J]. Advanced Energy Materials, 2019, 9(36): 1901081.
|
| [7] |
KADO Yuya, SONEDA Yasushi, HATORI Hiroaki, et al. Advanced carbon electrode for electrochemical capacitors[J]. Journal of Solid State Electrochemistry, 2019, 23(4): 1061-1081.
|
| [8] |
USHA RANI Malothu, NANAJI Katchala, RAO Tata Narasinga, et al. Corn husk derived activated carbon with enhanced electrochemical performance for high-voltage supercapacitors[J]. Journal of Power Sources, 2020, 471: 228387.
|
| [9] |
LI Minglong, YU Jing, WANG Xiaodong, et al. 3D porous MnO2@carbon nanosheet synthesized from rambutan peel for high-performing supercapacitor electrodes materials[J]. Applied Surface Science, 2020, 530: 147230.
|
| [10] |
陈飞, 刘成宝, 陈丰, 等. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576.
|
|
CHEN Fei, LIU Chengbao, CHEN Feng, et al. Research progress on graphitic carbon nitride based materials for supercapacitor[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2566-2576.
|
| [11] |
GUAN Mingjie, WANG Guannan, YONG Cheng, et al. A novel composite hard carbon from waste Camellia oleifera shell modified by phenol-formaldehyde resin for supercapacitor electrode with high specific capacitance[J]. Diamond and Related Materials, 2023, 138: 110248.
|
| [12] |
ZHANG Huaran, ZHU Mengxiang, ZHOU Jinping. Hard-soft carbon with tailored graphitization for high performance supercapacitors[J]. Journal of Energy Storage, 2023, 66: 107406.
|
| [13] |
CUI Mingjin, MENG Xiangkang. Overview of transition metal-based composite materials for supercapacitor electrodes[J]. Nanoscale Advances, 2020, 2(12): 5516-5528.
|
| [14] |
王帅晴, 杨思文, 李娜, 等. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306.
|
|
WANG Shuaiqing, YANG Siwen, LI Na, et al. Research progress on element doped biomass carbon materials for electrochemical energy storage[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306.
|
| [15] |
GHOSH Sourav, SANTHOSH Ravichandran, JENIFFER Sofia, et al. Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes[J]. Scientific Reports, 2019, 9(1): 16315.
|
| [16] |
LIN Jinghuang, JIA Henan, LIANG Haoyan, et al. In situ synthesis of vertical standing nanosized NiO encapsulated in graphene as electrodes for high-performance supercapacitors[J]. Advanced Science, 2018, 5(3): 1700687.
|
| [17] |
SHEOKAND Sandeep, KUMAR Prashant, JABEEN Shakra, et al. 3D highly porous microspherical morphology of NiO nanoparticles for supercapacitor application[J]. Journal of Solid State Electrochemistry, 2023, 27(3): 727-738.
|
| [18] |
LIU Yang, WEI Minglun, JIANG Caijiang, et al. Ni foam-supported Zn-Co-Ni ternary oxide nanosheet arrays derived from an MOF precursor with enhanced performances for supercapcitors and Ni-Zn batteries[J]. New Journal of Chemistry, 2023, 47(10): 4730-4738.
|
| [19] |
ZHANG Xiaoliang, YANG Wenshu, LIU Aifeng, et al. Anchoring mesoporous Fe3O4 nanospheres onto N-doped carbon nanotubes toward high-performance composite electrodes for supercapacitors[J]. Ceramics International, 2020, 46(14): 22373-22382.
|
| [20] |
DANG Shan, WEN Yuxiang, QIN Tianfeng, et al. Nanostructured manganese dioxide with adjustable Mn3+/Mn4+ ratio for flexible high-energy quasi-solid supercapacitors[J]. Chemical Engineering Journal, 2020, 396: 125342.
|
| [21] |
SHAN Lin, ZHANG Yu, XU Ying, et al. Wood-based hierarchical porous nitrogen-doped carbon/manganese dioxide composite electrode materials for high-rate supercapacitor[J]. Advanced Composites and Hybrid Materials, 2023, 6(5): 174.
|
| [22] |
ZHOU Huiming, ZHAN Yinbo, GUO Feiqiang, et al. Synthesis of biomass-derived carbon aerogel/MnO x composite as electrode material for high-performance supercapacitors[J]. Electrochimica Acta, 2021, 390: 138817.
|
| [23] |
DONG Xiaomei, JIN Huile, WANG Rongyue, et al. High volumetric capacitance, ultralong life supercapacitors enabled by waxberry‐derived hierarchical porous carbon materials[J]. Advanced Energy Materials, 2018, 8(11) :1702695.
|
| [24] |
JEONG Ji Hwan, KIM Yoong Ahm, KIM Bo-Hye. Electrospun polyacrylonitrile/cyclodextrin-derived hierarchical porous carbon nanofiber/MnO2 composites for supercapacitor applications[J]. Carbon, 2020, 164: 296-304.
|
| [25] |
张文, 许升, 吕宗泽, 等. 氮氧掺杂木质素基炭材料的制备及其电化学性能[J]. 林产化学与工业, 2018, 38(3): 55-62.
|
|
ZHANG Wen, XU Sheng, Zongze LYU, et al. Synthesis of nitrogen and oxygen-doped ligin-based electrode materials and its electrochemical performance[J]. Chemistry and Industry of Forest Products, 2018, 38(3): 55-62.
|
| [26] |
KOLAVADA Himalay, GAJJAR P N, GUPTA Sanjeev K. Unraveling quantum capacitance in supercapacitors: Energy storage applications[J]. Journal of Energy Storage, 2024, 81: 110354.
|
| [27] |
LI Jiaming, WEI Lansheng, JIANG Qimeng, et al. Salt-template assisted synthesis of cornstalk derived hierarchical porous carbon with excellent supercapacitance[J]. Industrial Crops and Products, 2020, 154: 112666.
|
| [28] |
MENG Tingting, RAMASUBRAMANIAN Brindha, SUNDARRAJAN Subramanian, et al. Unleashing capabilities of supercapacitors: Strategies to reduce internal resistances[J]. Journal of Power Sources, 2024, 596: 234068.
|
| [29] |
黄举, 孙佳明, 张坤, 等. N,P共掺杂香蒲基炭气凝胶的制备、表征及其电化学性能[J]. 林产化学与工业, 2022, 42(4): 1-8.
|
|
HUANG Ju, SUN Jiaming, ZHANG Kun, et al. Preparation, characterization and electrochemical performance of N, P co-doped cattail-derived carbon aerogels[J]. Chemistry and Industry of Forest Products, 2022, 42(4): 1-8.
|
| [30] |
ZHANG Zhiwen, LU Cuiying, LIU Guanghui, et al. Self-assembly of caragana-based nanomaterials into multiple heteroatom-doped 3D-interconnected porous carbon for advanced supercapacitors[J]. Materials Today Advances, 2023, 19: 100394.
|
| [31] |
LI Chengjie, DONG Xiqing, ZHANG Yingchao, et al. MnO x nanosheets anchored on a bio-derived porous carbon framework for high-performance asymmetric supercapacitors[J]. Applied Surface Science, 2020, 527: 146842.
|
| [32] |
TIAN Wenwen, CHENG Dekang, WANG Shan, et al. Phytic acid modified manganese dioxide/graphene composite aerogel as high-performance electrode materials for supercapacitors[J]. Applied Surface Science, 2019, 495: 143589.
|
| [33] |
KIM Young-Ryeul, Han Ku NAM, LEE Younggeun, et al. Green supercapacitor patterned by synthesizing MnO/laser-induced-graphene hetero-nanostructures on wood via femtosecond laser pulses[J]. Biochar, 2024, 6(1): 36.
|
| [34] |
WANG He, WANG Hongjie, HU Chengwen, et al. High-performance, flexible, all-solid-state, asymmetric supercapacitors from recycled resin-based activated carbon, MnO2, and waste nonwoven materials[J]. Journal of Energy Storage, 2024, 84: 110960.
|
| [35] |
WANG Qiufan, MA Yun, LIANG Xiao, et al. Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode[J]. Chemical Engineering Journal, 2019, 371: 145-153.
|
| [36] |
SONG Min-Kyu, CHENG Shuang, CHEN Haiyan, et al. Anomalous pseudocapacitive behavior of a nanostructured, mixed-valent manganese oxide film for electrical energy storage[J]. Nano Letters, 2012, 12(7): 3483-3490.
|
| [37] |
WANG Xin, WANG Xinyi, ZHOU Xiaofeng, et al. Self-templating synthesis of porous carbon with phytate salts for supercapacitor application[J]. Journal of Energy Storage, 2023, 57: 106221.
|
| [38] |
KALKAN Elanur, ARVAS Melih Besir, YAZAR Sibel, et al. Investigation of supercapacitor electrode performances of phosphorus-doped graphene oxide electrodes in various deep eutectic solvents and symmetric supercapacitor application[J]. Journal of Energy Storage, 2023, 73: 109184.
|
| [39] |
SHI Lu, SUN Yadi, LIU Wei, et al. Tailoring the microstructure and solid electrolyte interface of hard carbon to realize high-initial-coulombic-efficiency and high-rate sodium storage[J]. Electrochimica Acta, 2023, 459: 142557.
|
| [40] |
SINGU Bal Sydulu, YOON Kuk Ro. Exfoliated graphene-manganese oxide nanocomposite electrode materials for supercapacitor[J]. Journal of Alloys and Compounds, 2019, 770: 1189-1199.
|
| [41] |
ZENG Fanyan, PAN Yang, YANG Yong, et al. Facile construction of Mn3O4-MnO2 hetero-nanorods/graphene nanocomposite for highly sensitive electrochemical detection of hydrogen peroxide[J]. Electrochimica Acta, 2016, 196: 587-596.
|
| [42] |
Qiu LYU, HAO Huilian, GE Manman, et al. S-doped graphene/mixed-valent manganese oxides composite electrode with superior performance for supercapacitors[J]. Journal of Alloys and Compounds, 2020, 819: 152970.
|
| [43] |
Justin RAJ C, MANIKANDAN Ramu, CHO Won-Je, et al. High-performance flexible and wearable planar supercapacitor of manganese dioxide nanoflowers on carbon fiber cloth[J]. Ceramics International, 2020, 46(13): 21736-21743.
|
| [44] |
TANG Xiaoning, ZHU Shaokuan, NING Jian, et al. Charge storage mechanisms of manganese dioxide-based supercapacitors: A review[J]. New Carbon Materials, 2021, 36(4): 702-710.
|
| [45] |
LIN Guanfeng, WANG Guilong, XIONG Yongzhi, et al. High-performance electrosorption of lanthanum ion by Mn3O4-loaded phosphorus-doped porous carbon electrodes via capacitive deionization[J]. Journal of Environmental Management, 2024, 358: 120856.
|
| [46] |
娄瑞, 刘钰, 田杰, 等. 纳米木质素基多孔炭的制备及其电化学性能[J]. 化工进展, 2022, 41(6): 3170-3177.
|
|
LOU Rui, LIU Yu, TIAN Jie, et al. Preparation of LNP-based hierarchical porous carbon and its electrochemical properties[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3170-3177.
|
| [47] |
SU Die, YANG Jianping, HONG Qingshui, et al. A novel high pseudo-capacitive contribution anode in K-ion battery: Porous TiNbO4/C nanofibers[J]. Journal of Power Sources, 2022, 541: 231635.
|
| [48] |
娄瑞, 牛涛嫄, 曹启航, 等. δ-MnO2原位负载纳米木质素基分级多孔炭的制备及其电化学性能[J]. 化工进展, 2024, 43(2): 1013-1021.
|
|
LOU Rui, NIU Taoyuan, CAO Qihang, et al. Preparation and electrochemical performances of in situ growth of δ-MnO2 on hierarchical porous carbon derived from LNP[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1013-1021.
|