化工进展 ›› 2025, Vol. 44 ›› Issue (6): 3509-3523.DOI: 10.16085/j.issn.1000-6613.2024-0666
• 材料科学与技术 • 上一篇
武亚丽1(
), 张效林1(
), 高丽敏1, 黄茂财1, 蔡斌1, 张继兵2
收稿日期:2024-04-22
修回日期:2024-07-18
出版日期:2025-06-25
发布日期:2025-07-08
通讯作者:
张效林
作者简介:武亚丽(2000—),女,硕士研究生,研究方向为植物纤维高值化及天然纤维复合材料。E-mail:2451148340@qq.com。
基金资助:
WU Yali1(
), ZHANG Xiaolin1(
), GAO Limin1, HUANG Maocai1, CAI Bin1, ZHANG Jibing2
Received:2024-04-22
Revised:2024-07-18
Online:2025-06-25
Published:2025-07-08
Contact:
ZHANG Xiaolin
摘要:
因产量丰富、种类多样、成本低廉、可再生降解,以及良好的比强度和比刚度等特性,生物质秸秆在材料领域备受关注,其资源化利用对于保护环境和实现双碳目标有积极推动作用。本文综述了秸秆粉和秸秆纤维资源化利用的技术进展,着重介绍了秸秆粉/纤维衍生产品的制备技术以及秸秆粉/纤维基复合材料的性能优化,分析了秸秆粉/纤维在生物燃料、纳米纤维素、发泡材料及环境材料等领域中的应用现状,展望了秸秆粉/纤维在化工材料领域实现高值资源化利用的发展前景,指出秸秆粉/纤维在制备衍生产品、建筑材料以及木塑复合材料等方面亟待解决的关键问题,旨在为秸秆资源化利用技术研究提供参考。
中图分类号:
武亚丽, 张效林, 高丽敏, 黄茂财, 蔡斌, 张继兵. 秸秆粉/纤维资源化利用技术进展[J]. 化工进展, 2025, 44(6): 3509-3523.
WU Yali, ZHANG Xiaolin, GAO Limin, HUANG Maocai, CAI Bin, ZHANG Jibing. Technical progress in resource utilization of straw powder/fiber[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3509-3523.
| 秸秆种类 | 制备方式 | 性能优势 |
|---|---|---|
| 麦秸秆粉 | 化学发泡法 | 抗压强度和隔热性能优异,适用于保温材料[ |
| 大麦秸秆纤维 | 微波辐射发泡 | 良好刚性、韧性和强度,并适用于包装领域[ |
| 稻秆粉 | 冷冻干燥 | 抗压强度出色,轻质环保[ |
表1 秸秆粉/纤维基发泡材料的性能优势
| 秸秆种类 | 制备方式 | 性能优势 |
|---|---|---|
| 麦秸秆粉 | 化学发泡法 | 抗压强度和隔热性能优异,适用于保温材料[ |
| 大麦秸秆纤维 | 微波辐射发泡 | 良好刚性、韧性和强度,并适用于包装领域[ |
| 稻秆粉 | 冷冻干燥 | 抗压强度出色,轻质环保[ |
| 秸秆种类 | 吸附种类 | 影响因素 | 吸附效果 |
|---|---|---|---|
| 水稻 | 磷类化合物 | 配比 | 吸附容量达71.94mg/g,可实现磷类化合物的高效吸附[ |
| 水稻 | 染料和两性重金属 | 官能团,活性吸附位点 | 复合接枝AM和CA对MO、MB、Cr2O72-和Cu2+的吸附量分别提高133%、210%、196%和151%[ |
| 小麦 | 有机污染物BPA | 孔隙率,表面积 | BPA吸附量(909.10mg/g)远超介孔生物炭,在较宽pH范围和多次吸附-解吸循环后吸附性能良好[ |
表2 生物基吸附剂吸附效率的影响因素
| 秸秆种类 | 吸附种类 | 影响因素 | 吸附效果 |
|---|---|---|---|
| 水稻 | 磷类化合物 | 配比 | 吸附容量达71.94mg/g,可实现磷类化合物的高效吸附[ |
| 水稻 | 染料和两性重金属 | 官能团,活性吸附位点 | 复合接枝AM和CA对MO、MB、Cr2O72-和Cu2+的吸附量分别提高133%、210%、196%和151%[ |
| 小麦 | 有机污染物BPA | 孔隙率,表面积 | BPA吸附量(909.10mg/g)远超介孔生物炭,在较宽pH范围和多次吸附-解吸循环后吸附性能良好[ |
| 秸秆种类 | 影响因素 | 热性能分析 | 文献 |
|---|---|---|---|
| 小麦 | 取向 | 垂直于热流方向时,热导率λ和水分渗透系数更低 | [ |
| 小麦 | 密度,厚度 | 当密度从150kg/m3降低到60kg/m3时,λ平均下降25%,厚度对λ影响不大 | [ |
| 水稻 | 湿度,取向 | 平行于热流方向的λ比垂直(随机)方向的λ高1.7倍;随湿度增加,λ大幅上升50%~130% | [ |
| 水稻 | 施工细节 | 秸秆砖与局部施工细节间潜在的热桥问题会降低热性能和增加能耗 | [ |
| 大麦 | 湿度 | RH从10%增加到90%时,热导率与RH呈正线性相关 | [ |
表3 秸秆砖与秸秆板热性能的影响因素
| 秸秆种类 | 影响因素 | 热性能分析 | 文献 |
|---|---|---|---|
| 小麦 | 取向 | 垂直于热流方向时,热导率λ和水分渗透系数更低 | [ |
| 小麦 | 密度,厚度 | 当密度从150kg/m3降低到60kg/m3时,λ平均下降25%,厚度对λ影响不大 | [ |
| 水稻 | 湿度,取向 | 平行于热流方向的λ比垂直(随机)方向的λ高1.7倍;随湿度增加,λ大幅上升50%~130% | [ |
| 水稻 | 施工细节 | 秸秆砖与局部施工细节间潜在的热桥问题会降低热性能和增加能耗 | [ |
| 大麦 | 湿度 | RH从10%增加到90%时,热导率与RH呈正线性相关 | [ |
| 基体 | 填料秸秆纤维种类 | 改性剂 | 增强效果 | 文献 |
|---|---|---|---|---|
| 硅酸盐水泥砂浆 | 水稻 | — | 显著提升了砂浆的保温性能,机械性能虽有小幅下降,但仍满足建筑砂浆性能标准 | [ |
| 水泥 | 小麦 | 聚磷酸铵、氢氧化镁、氢氧化铝 | 机械性能、阻燃性能、抑烟性能热稳定性有所提高,可用作耐火材料 | [ |
| 土壤 | 大麦和薰衣草 | — | 薰衣草秸秆纤维:抗压强度、抗干磨损性、耐久性、抗侵蚀性和抗霉菌生长性能显著提升 大麦秸秆纤维:优异的机械性能和耐热性能 | [ |
| 氢氧化钙 | 玉米 | — | 生物砖表面和侧面螺固力均随纤维含量增加而增加,可悬挂轻质物品 | [ |
表4 秸秆粉/纤维基填料对建筑复合材料的增强效果
| 基体 | 填料秸秆纤维种类 | 改性剂 | 增强效果 | 文献 |
|---|---|---|---|---|
| 硅酸盐水泥砂浆 | 水稻 | — | 显著提升了砂浆的保温性能,机械性能虽有小幅下降,但仍满足建筑砂浆性能标准 | [ |
| 水泥 | 小麦 | 聚磷酸铵、氢氧化镁、氢氧化铝 | 机械性能、阻燃性能、抑烟性能热稳定性有所提高,可用作耐火材料 | [ |
| 土壤 | 大麦和薰衣草 | — | 薰衣草秸秆纤维:抗压强度、抗干磨损性、耐久性、抗侵蚀性和抗霉菌生长性能显著提升 大麦秸秆纤维:优异的机械性能和耐热性能 | [ |
| 氢氧化钙 | 玉米 | — | 生物砖表面和侧面螺固力均随纤维含量增加而增加,可悬挂轻质物品 | [ |
| [1] | 张晓庆, 王梓凡, 参木友, 等. 中国农作物秸秆产量及综合利用现状分析[J]. 中国农业大学学报, 2021, 26(9): 30-41. |
| ZHANG Xiaoqing, WANG Zifan, Muyou CAN, et al. Analysis of yield and current comprehensive utilization of crop straws in China[J]. Journal of China Agricultural University, 2021, 26(9): 30-41. | |
| [2] | 农业农村部新闻办公室. 《全国农作物秸秆综合利用情况报告》发布2021年我国农作物秸秆综合利用率达88.1%[J]. 中国农业综合开发, 2022(10): 32. |
| Press Office of the Ministry of Agriculture and Rural Development. The National Report on Comprehensive Utilization of Crop Straw was released. In 2021, the comprehensive utilization rate of crop straw in China reached 88.1%[J]. Agricultural Comprehensive Development in China, 2022(10): 32. | |
| [3] | PICKERING K L, M G Aruan EFENDY, LE T M. A review of recent developments in natural fibre composites and their mechanical performance[J]. Composites Part A: Applied Science and Manufacturing, 2016, 83: 98-112. |
| [4] | 施佳楠, 雷文. 不同物理状态植物纤维/聚合物复合材料的3D打印研究[J]. 高分子通报, 2022(5): 10-16. |
| SHI Jianan, LEI Wen. 3D printing of plant fiber/polymer composites with different physical states[J]. Polymer Bulletin, 2022(5): 10-16. | |
| [5] | 刘彬, 安卫龙, 倪楠楠. 国外热塑性复合材料工程应用现状[J]. 航空制造技术, 2021, 64(22): 80-90. |
| LIU Bin, AN Weilong, NI Nannan. Application status of thermoplastic composite materials in foreign engineering[J]. Aeronautical Manufacturing Technology, 2021, 64(22): 80-90. | |
| [6] | TONINI Davide, VADENBO Carl, ASTRUP Thomas Fruergaard. Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective[J]. Energy, 2017, 124: 295-309. |
| [7] | WILLIAMS A, JONES J M, MA L, et al. Pollutants from the combustion of solid biomass fuels[J]. Progress in Energy and Combustion Science, 2012, 38(2): 113-137. |
| [8] | Cuong N DAO, TABIL Lope G, MUPONDWA Edmund, et al. Microbial pretreatment of camelina straw and switchgrass by Trametes versicolor and Phanerochaete chrysosporium to improve physical quality and enhance enzymatic digestibility of solid biofuel pellets[J]. Renewable Energy, 2023, 217: 119147. |
| [9] | WANG Ting, LI Yuening, ZHI Dengke, et al. Assessment of combustion and emission behavior of corn straw biochar briquette fuels under different temperatures[J]. Journal of Environmental Management, 2019, 250: 109399. |
| [10] | SUSMOZAS Ana, Raquel MARTÍN-SAMPEDRO, IBARRA David, et al. Process strategies for the transition of 1G to advanced bioethanol production[J]. Processes, 2020, 8(10): 1310. |
| [11] | EL-SHEEKH Mostafa M, BEDAIWY Mohammed Y, EL-NAGAR Aya A, et al. Ethanol biofuel production and characteristics optimization from wheat straw hydrolysate: Performance and emission study of DI-diesel engine fueled with diesel/biodiesel/ethanol blends[J]. Renewable Energy, 2022, 191: 591-607. |
| [12] | VALLES Alejo, Javier ÁLVAREZ-HORNOS F, Vicente MARTÍNEZ-SORIA, et al. Comparison of simultaneous saccharification and fermentation and separate hydrolysis and fermentation processes for butanol production from rice straw[J]. Fuel, 2020, 282: 118831. |
| [13] | CHANDRA R, TAKEUCHI H, HASEGAWA T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1462-1476. |
| [14] | HE Chao, SONG Hao, HOU Tingting, et al. Simultaneous addition of CO2-nanobubble water and iron nanoparticles to enhance methane production from anaerobic digestion of corn straw[J]. Bioresource Technology, 2023, 377: 128947. |
| [15] | 侯其东, 鞠美庭. 秸秆类生物质资源化技术研究前沿和发展趋势[J]. 环境保护, 2020, 48(18): 65-70. |
| HOU Qidong, JU Meiting. Frontiers and trend of straw biomass utilization technology[J]. Environmental Protection, 2020, 48(18): 65-70. | |
| [16] | WU Xuejiao, FAN Xueting, XIE Shunji, et al. Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions[J]. Nature Catalysis, 2018, 1: 772-780. |
| [17] | CHEN Yongxing, DONG Lin, MIAO Jiaxin, et al. Hydrothermal liquefaction of corn straw with mixed catalysts for the production of bio-oil and aromatic compounds[J]. Bioresource Technology, 2019, 294: 122148. |
| [18] | JASMINE Alice, RAJENDRAN Muruganantham, THIRUNAVUKKARASU Kavin, et al. Microwave-assisted alkali pre-treatment medium for fractionation of rice straw and catalytic conversion to value-added 5-hydroxymethyl furfural and lignin production[J]. International Journal of Biological Macromolecules, 2023, 236: 123999. |
| [19] | 张秀伶, 王稳航. 纳米纤维素研究及在食品工业中的应用前景[J]. 食品工业科技, 2016, 37(21): 377-382. |
| ZHNNG Xiuling, WANG Wenhang. Study on nano-cellulose and its application prospect in food industry[J]. Science and Technology of Food Industry, 2016, 37(21): 377-382. | |
| [20] | DJAFARI PETROUDY Seyed Rahman, ARJMAND KAHAGH Sajad, VATANKHAH Elham. Environmentally friendly superabsorbent fibers based on electrospun cellulose nanofibers extracted from wheat straw[J]. Carbohydrate Polymers, 2021, 251: 117087. |
| [21] | HU Sixiao, GU Jin, JIANG Feng, et al. Holistic rice straw nanocellulose and hemicelluloses/lignin composite films[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 728-737. |
| [22] | LU Ping, HSIEH You-Lo. Preparation and characterization of cellulose nanocrystals from rice straw[J]. Carbohydrate Polymers, 2012, 87(1): 564-573. |
| [23] | 张艳, 孙怡然, 于飞, 等. 细菌纤维素及其复合材料在环境领域应用的研究进展[J]. 复合材料学报, 2021, 38(8): 2418-2427. |
| ZHANG Yan, SUN Yiran, YU Fei, et al. Research progress on the application of bacterial cellulose and its composites in environmental field[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2418-2427. | |
| [24] | DHAR Prodyut, PRATTO Bruna, GONÇALVES CRUZ Antonio Jose, et al. Valorization of sugarcane straw to produce highly conductive bacterial cellulose/graphene nanocomposite films through in situ fermentation: Kinetic analysis and property evaluation[J]. Journal of Cleaner Production, 2019, 238: 117859. |
| [25] | ZHANG Tao, LI Zhangdi, Yuanfei LYU, et al. Recent progress and future prospects of oil-absorbing materials[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1282-1295. |
| [26] | LI Bo, ZHAO Guoqun, WANG Guilong, et al. A green strategy to regulate cellular structure and crystallization of poly(lactic acid) foams based on pre-isothermal cold crystallization and CO2 foaming[J]. International Journal of Biological Macromolecules, 2019, 129: 171-180. |
| [27] | LI Hongwei, XU Chunbao, YUAN Zhongshun, et al. Synthesis of bio-based polyurethane foams with liquefied wheat straw: Process optimization[J]. Biomass and Bioenergy, 2018, 111: 134-140. |
| [28] | LOPEZ-GIL A, SILVA-BELLUCCI F, VELASCO D, et al. Cellular structure and mechanical properties of starch-based foamed blocks reinforced with natural fibers and produced by microwave heating[J]. Industrial Crops and Products, 2015, 66: 194-205. |
| [29] | ZAMAN Ahsan, HUANG Fei, JIANG Man, et al. Fabrication of enhanced epoxy composite by embedded hierarchical porous lignocellulosic foam[J]. Renewable Energy, 2020, 150: 1066-1073. |
| [30] | HUANG Xule, SHENG Xueru, GUO Yanzhu, et al. Rice straw derived adsorbent for fast and efficient phosphate elimination from aqueous solution[J]. Industrial Crops and Products, 2022, 184: 115105. |
| [31] | LIU Qiming, LI Yaoyue, CHEN Huafeng, et al. Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions[J]. Journal of Hazardous Materials, 2020, 382: 121040. |
| [32] | SHI Wen, WANG Hui, YAN Jinlong, et al. Wheat straw derived biochar with hierarchically porous structure for bisphenol A removal: Preparation, characterization, and adsorption properties[J]. Separation and Purification Technology, 2022, 289: 120796. |
| [33] | WU Yong, MING Jiabao, ZHOU Wenbing, et al. Efficiency and mechanism in preparation and heavy metal cation/anion adsorption of amphoteric adsorbents modified from various plant straws[J]. Science of the Total Environment, 2023, 884: 163887. |
| [34] | ZHAO Nan, YANG Xixiang, ZHANG Jing, et al. Adsorption mechanisms of dodecylbenzene sulfonic acid by corn straw and poplar leaf biochars[J]. Materials, 2017, 10(10): 1119. |
| [35] | ZHAO Nan, YIN Zheng, LIU Feng, et al. Environmentally persistent free radicals mediated removal of Cr(Ⅵ) from highly saline water by corn straw biochars[J]. Bioresource Technology, 2018, 260: 294-301. |
| [36] | Thomas KLASSON K, WARTELLE Lynda H, RODGERS James E, et al. Copper(Ⅱ) adsorption by activated carbons from pecan shells: Effect of oxygen level during activation[J]. Industrial Crops and Products, 2009, 30(1): 72-77. |
| [37] | SUN Jingkuan, LIAN Fei, LIU Zhongqi, et al. Biochars derived from various crop straws: Characterization and Cd(Ⅱ) removal potential[J]. Ecotoxicology and Environmental Safety, 2014, 106: 226-231. |
| [38] | ZHAO Nan, ZHAO Chuanfang, Yizhong LYU, et al. Adsorption and coadsorption mechanisms of Cr(Ⅵ) and organic contaminants on H3PO4 treated biochar[J]. Chemosphere, 2017, 186: 422-429. |
| [39] | Mamta PAL, SHRIVASTAVA Akansha, SHARMA Rakesh Kumar. Electroactive biofilm development on carbon fiber anode by Pichia fermentans in a wheat straw hydrolysate based microbial fuel cell[J]. Biomass and Bioenergy, 2023, 168: 106682. |
| [40] | WANG Yixin, ZHU Hui, TU Wenyao, et al. Sound absorption, structure and mechanical behavior of konjac glucomannan-based aerogels with addition of gelatin and wheat straw[J]. Construction and Building Materials, 2022, 352: 129052. |
| [41] | YU Wangwang, DONG Lili, LEI Wen, et al. Rice straw powder/polylactic acid biocomposites for three-dimensional printing[J]. Advanced Composites Letters, 2020, 29: 2633366X2096736. |
| [42] | Ismael ROMERO-OCAÑA, DELGADO Natalia Fernández, MOLINA Sergio I. Biomass waste from rice and wheat straw for developing composites by stereolithography additive manufacturing[J]. Industrial Crops and Products, 2022, 189: 115832. |
| [43] | 肖力光, 丁艳波. 秸秆建筑材料的应用及研究进展[J]. 应用化工, 2021, 50(4): 1142-1146. |
| XIAO Liguang, DING Yanbo. Application and research progress of straw building materials[J]. Applied Chemical Industry, 2021, 50(4): 1142-1146. | |
| [44] | PLATT S L, MASKELL D, SHEA A, et al. Impact of fibre orientation on the hygrothermal properties of straw bale insulation[J]. Construction and Building Materials, 2022, 349: 128752. |
| [45] | COSTES Jean-Philippe, EVRARD Arnaud, BIOT Benjamin, et al. Thermal conductivity of straw bales: Full size measurements considering the direction of the heat flow[J]. Buildings, 2017, 7(1): 11. |
| [46] | SABAPATHY Karthik A, GEDUPUDI Sateesh. Straw bale based constructions: Measurement of effective thermal transport properties[J]. Construction and Building Materials, 2019, 198: 182-194. |
| [47] | Chuen Hon KOH, KRANIOTIS Dimitrios. Hygrothermal performance, energy use and embodied emissions in straw bale buildings[J]. Energy and Buildings, 2021, 245: 111091. |
| [48] | D’ALESSANDRO F, BIANCHI F, BALDINELLI G, et al. Straw bale constructions: Laboratory, in field and numerical assessment of energy and environmental performance[J]. Journal of Building Engineering, 2017, 11: 56-68. |
| [49] | BO Rui, ZHANG Hongrui, MA Zixuan, et al. Straw bale construction towards nearly-zero energy building design with low carbon emission in Northern China[J]. Energy and Buildings, 2023, 298: 113555. |
| [50] | CASCONE Stefano, EVOLA Gianpiero, GAGLIANO Antonio, et al. Laboratory and in-situ measurements for thermal and acoustic performance of straw bales[J]. Sustainability, 2019, 11(20): 5592. |
| [51] | OSANYINTOLA Olalekan F, SIMONSON Carey J. Moisture buffering capacity of hygroscopic building materials: Experimental facilities and energy impact[J]. Energy and Buildings, 2006, 38(10): 1270-1282. |
| [52] | SIMONSON Carey J, SALAONVAARA Mikael, OJANEN Tuomo. Heat and mass transfer between indoor air and a permeable and hygroscopic building envelope: Part Ⅱ-Verification and numerical studies[J]. Journal of Thermal Envelope and Building Science, 2004, 28(2): 161-185. |
| [53] | PALUMBO M, LACASTA A M, HOLCROFT N, et al. Determination of hygrothermal parameters of experimental and commercial bio-based insulation materials[J]. Construction and Building Materials, 2016, 124: 269-275. |
| [54] | AWOYERA Paul O, AKINRINADE Ayomide D, DE SOUSA GALDINO André Gustavo, et al. Thermal insulation and mechanical characteristics of cement mortar reinforced with mineral wool and rice straw fibers[J]. Journal of Building Engineering, 2022, 53: 104568. |
| [55] | JIANG Demin, JIANG Di, Shuchen LYU, et al. Effect of modified wheat straw fiber on properties of fiber cement-based composites at high temperatures[J]. Journal of Materials Research and Technology, 2021, 14: 2039-2060. |
| [56] | GIROUDON Marie, Aurélie LABOREL-PRÉNERON, AUBERT Jean-Emmanuel, et al. Comparison of barley and lavender straws as bioaggregates in earth bricks[J]. Construction and Building Materials, 2019, 202: 254-265. |
| [57] | GAO Yufa, WANG Meng, MA Chao, et al. Single and multi-factor analysis on screw-holding power of corn straw fiber brick[J]. Construction and Building Materials, 2018, 181: 579-587. |
| [58] | ZHANG Xiaolin, WANG Zhe, CONG Longkang, et al. Effects of fiber content and size on the mechanical properties of wheat straw/recycled polyethylene composites[J]. Journal of Polymers and the Environment, 2020, 28(7): 1833-1840. |
| [59] | FRIEDRICH Daniel. Thermoplastic moulding of wood-polymer composites (WPC): A review on physical and mechanical behaviour under hot-pressing technique[J]. Composite Structures, 2021, 262: 113649. |
| [60] | JAWAID M, ABDUL KHALIL H P S. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review[J]. Carbohydrate Polymers, 2011, 86(1): 1-18. |
| [61] | ZHANG Lei, XU Huicheng, WANG Weihong. Performance of straw/linear low density polyethylene composite prepared with film-roll hot pressing[J]. Polymers, 2020, 12(4): 860. |
| [62] | SYDUZZAMAN Md, FARUQUE Md Abdullah AL, BILISIK Kadir, et al. Plant-based natural fibre reinforced composites: A review on fabrication, properties and applications[J]. Coatings, 2020, 10(10): 973. |
| [63] | LEE Ching Hao, KHALINA Abdan, LEE Seng Hua. Importance of interfacial adhesion condition on characterization of plant-fiber-reinforced polymer composites: A review[J]. Polymers, 2021, 13(3): 438. |
| [64] | 闫红芹, 李龙. 竹纤维热处理后的力学性能研究[J]. 现代纺织技术, 2005, 13(1): 1-3. |
| YAN Hongqin, LI Long. Study of mechanical properties of the bamboo fiber after thermal treatment[J]. Advanced Textile Technology, 2005, 13(1): 1-3. | |
| [65] | HUNER Umit, GULEC Haci ALI, DAMAR HUNER Irem. Atmospheric pressure plasma jet treatment of wheat straw for improved compatibility in epoxy composites[J]. Journal of Applied Polymer Science, 2018, 135(6): e45828. |
| [66] | BARAL Nawa Raj, SHAH Ajay. Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover[J]. Bioresource Technology, 2017, 232: 331-343. |
| [67] | 丁芳芳, 张敏, 王景平, 等. 玉米秸秆纤维/PBS复合材料的制备及性能[J]. 高分子材料科学与工程, 2011, 27(10): 158-161. |
| DING Fangfang, ZHANG Min, WANG Jingping, et al. Preparation and performance of corn straw fiber/PBS composites[J]. Polymer Materials Science & Engineering, 2011, 27(10): 158-161. | |
| [68] | YAN Libo, CHOUW Nawawi, JAYARAMAN Krishnan. Flax fibre and its composites — A review[J]. Composites Part B: Engineering, 2014, 56: 296-317. |
| [69] | CHEN Kang, LIAO Chenggang, LI Ping, et al. A compatible interface of wheat straw/polylactic acid composites collaborative constructed using KH570-nano TiO2 [J]. Journal of Polymers and the Environment, 2022, 30(6): 2209-2221. |
| [70] | CHEN Chao, CHO Misuk, KIM Byung-Woo, et al. Thermo plasticization and characterization of kenaf fiber by benzylation[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(3): 1107-1111. |
| [71] | NWADIOGBU Joseph O, OKOYE Patrice A C, AJIWE Vincent I, et al. Hydrophobic treatment of corn cob by acetylation: Kinetics and thermodynamics studies[J]. Journal of Environmental Chemical Engineering, 2014, 2(3): 1699-1704. |
| [72] | JIANG Hua, ZHANG Yang, WANG Xuefei. Effect of lipases on the surface properties of wheat straw[J]. Industrial Crops and Products, 2009, 30(2): 304-310. |
| [73] | LI Yan, PICKERING K L. Hemp fibre reinforced composites using chelator and enzyme treatments[J]. Composites Science and Technology, 2008, 68(15/16): 3293-3298. |
| [74] | KHAMTREE Sriwan, RATANAWILAI Thanate, RATANAWILAI Sukritthira. The effect of alkaline-silane treatment of rubberwood flour for water absorption and mechanical properties of plastic composites[J]. Journal of Thermoplastic Composite Materials, 2020, 33(5): 599-613. |
| [75] | 阳雄南, 张效林, 聂孙建, 等. 不同生物酶改性处理对麦秸秆纤维/高密度聚乙烯复合材料性能的影响[J]. 复合材料学报, 2020, 37(5): 1033-1040. |
| YANG Xiongnan, ZHANG Xiaolin, NIE Sunjian, et al. Effect of different enzyme modification on properties of wheat straw fiber/high density polyethylene composites[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1033-1040. | |
| [76] | WANG Dong, XUAN Lihui, HAN Guangping, et al. Preparation and characterization of foamed wheat straw fiber/polypropylene composites based on modified nano-TiO2 particles[J]. Composites Part A: Applied Science and Manufacturing, 2020, 128: 105674. |
| [77] | JIANG Dong, PAN Mingzhu, CAI Xin, et al. Flame retardancy of rice straw-polyethylene composites affected by in situ polymerization of ammonium polyphosphate/silica[J]. Composites A: Applied Science and Manufacturing, 2018, 109: 1-9. |
| [78] | 葛铁军, 赵婉晴, 刘啸凤. PBAT/棕榈酰氯酯化改性秸秆粉复合材料制备与性能[J]. 工程塑料应用, 2022, 50(1): 6-13. |
| GE Tiejun, ZHAO Wanqing, LIU Xiaofeng. Preparation and properties of PBAT/palmitoyl chloride esterified straw powder composites[J]. Engineering Plastics Application, 2022, 50(1): 6-13. | |
| [79] | FAN Qiqi, HAN Guangping, CHENG Wanli, et al. Effect of intercalation structure of organo-modified montmorillonite/polylactic acid on wheat straw fiber/polylactic acid composites[J]. Polymers, 2018, 10(8): 896. |
| [80] | YU Wangwang, DONG Lili, LEI Wen, et al. Effects of rice straw powder (RSP) size and pretreatment on properties of FDM 3D-printed RSP/poly(lactic acid) biocomposites[J]. Molecules, 2021, 26(11): 3234. |
| [1] | 许志成, 高宁博, 全翠, 宋庆彬. 低温等离子体协同催化转化生物质气化焦油研究进展[J]. 化工进展, 2025, 44(6): 3432-3442. |
| [2] | 李佩燚, 孙波龙, 刘瑞岩, 周歆尧, 刘瑞林, 胡园园, 徐功涛, 李新平. 海藻酸钠/二氧化钛复合多孔材料的制备及油水分离应用[J]. 化工进展, 2025, 44(6): 3053-3061. |
| [3] | 曹湘洪, 周峰, 姜睿, 刘诗哲, 方向晨, 亢万忠, 乔金樑, 聂红. 加快我国生物基材料产业发展的对策[J]. 化工进展, 2025, 44(5): 2385-2393. |
| [4] | 钟家伟, 谭涛, 谢君, 陈勇. 生物质高值能源转换技术[J]. 化工进展, 2025, 44(5): 2524-2528. |
| [5] | 聂红, 习远兵, 葛泮珠, 丁石, 张登前. 可持续航空燃料生产路线与展望——以中石化石科院为例[J]. 化工进展, 2025, 44(5): 2529-2534. |
| [6] | 王水众, 宋国勇. 木质素选择性氢解制备高功能化单酚及其高值利用[J]. 化工进展, 2025, 44(5): 2535-2540. |
| [7] | 陈彦君, 戴杰, 单军强, 张思欣, 计磊, 朱晨杰, 应汉杰. 我国纤维素乙醇的研究进展和发展趋势[J]. 化工进展, 2025, 44(5): 2541-2562. |
| [8] | 乔凯, 张震宇, 马会霞, 傅杰, 周峰. 生物基呋喃二甲酸关键技术路线和产业发展现状[J]. 化工进展, 2025, 44(5): 2577-2586. |
| [9] | 许镇浩, 易子骁, 曾晨, 王宇辰, 严凯. 生物质基平台分子转化升级的研究进展[J]. 化工进展, 2025, 44(5): 2642-2654. |
| [10] | 冯娇, 刘明明, 刘耀, 王昕, 陈可泉. 利用可再生原料生物合成脂肪族短链二元胺与醇的研究进展[J]. 化工进展, 2025, 44(5): 2655-2666. |
| [11] | 孙仲顺, 刘根, 程春昱, 李美昕, 杨宪坛, 吴志强, 杨伯伦. 生物质热化学转化制备绿氢研究进展[J]. 化工进展, 2025, 44(5): 2667-2682. |
| [12] | 艾佳臻, 张振磊, 詹国雄, 马龙巍, 史国靖, 尹海川, 张香平. “木质素优先”还原催化分馏工艺与模拟研究进展[J]. 化工进展, 2025, 44(5): 2683-2693. |
| [13] | 丁阿静, 周巧巧, 顾学红. 膜反应器中杨木催化气化制清洁合成气[J]. 化工进展, 2025, 44(5): 2716-2723. |
| [14] | 刘启予, 刘伟峰, 邱学青. 基于界面相容性强化的木质素/高分子复合材料构筑策略[J]. 化工进展, 2025, 44(5): 2733-2745. |
| [15] | 乔金樑. 原料替代助力我国石化产业高质量发展[J]. 化工进展, 2025, 44(5): 2803-2805. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |